-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathtrain_cls.py
460 lines (370 loc) · 20.2 KB
/
train_cls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
import os
import sys
import numpy as np
import matplotlib
matplotlib.use('pdf')
# import matplotlib.pyplot as plt
import importlib
import argparse
import tensorflow as tf
import pickle
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR)
sys.path.append(os.path.join(BASE_DIR, 'models'))
sys.path.append(os.path.join(BASE_DIR, 'utils'))
import tf_util
import visualization
import provider
import utils
# ModelNet40 official train/test split. MOdelNet10 requires separate downloading and sampling.
MAX_N_POINTS = 2048
NUM_CLASSES = 40
TRAIN_FILES = provider.getDataFiles( \
os.path.join(BASE_DIR, 'data/modelnet'+str(NUM_CLASSES)+'_ply_hdf5_'+ str(MAX_N_POINTS)+ '/train_files.txt'))
TEST_FILES = provider.getDataFiles(\
os.path.join(BASE_DIR, 'data/modelnet'+str(NUM_CLASSES)+'_ply_hdf5_'+ str(MAX_N_POINTS)+ '/test_files.txt'))
LABEL_MAP = provider.getDataFiles(\
os.path.join(BASE_DIR, 'data/modelnet'+str(NUM_CLASSES)+'_ply_hdf5_'+ str(MAX_N_POINTS)+ '/shape_names.txt'))
print( "Loading Modelnet" + str(NUM_CLASSES))
#Execute
#python train_cls.py --gpu=0 --log_dir='log' --batch_size=64 --num_point=1024 --num_gaussians=8 --gmm_variance=0.0156 --gmm_type='grid' --learning_rate=0.001 --model='voxnet_pfv' --max_epoch=200 --momentum=0.9 --optimizer='adam' --decay_step=200000 --weight_decay=0.0 --decay_rate=0.7
augment_rotation, augment_scale, augment_translation, augment_jitter, augment_outlier = (False, True, True, True, False)
parser = argparse.ArgumentParser()
#Parameters for learning
parser.add_argument('--gpu', type=int, default=2, help='GPU to use [default: GPU 0]')
parser.add_argument('--model', default='3dmfv_net_cls', help='Model name [default: 3dmfv_net_cls]')
parser.add_argument('--log_dir', default='log_trial', help='Log dir [default: log]')
parser.add_argument('--num_point', type=int, default=1024, help='Point Number [256/512/1024/2048] [default: 1024]')
parser.add_argument('--max_epoch', type=int, default=200, help='Epoch to run [default: 200]')
parser.add_argument('--batch_size', type=int, default=64, help='Batch Size during training [default: 64]')
parser.add_argument('--learning_rate', type=float, default=0.001, help='Initial learning rate [default: 0.001]')
parser.add_argument('--momentum', type=float, default=0.9, help='Initial learning rate [default: 0.9]')
parser.add_argument('--optimizer', default='adam', help='adam or momentum [default: adam]')
parser.add_argument('--decay_step', type=int, default=200000, help='Decay step for lr decay [default: 200000]')
parser.add_argument('--decay_rate', type=float, default=0.7, help='Decay rate for lr decay [default: 0.7]')
parser.add_argument('--weight_decay', type=float, default=0.0, help='weight decay coef [default: 0.0]')
# Parameters for GMM
parser.add_argument('--gmm_type', default='grid', help='type of gmm [grid/learn], learn uses expectation maximization algorithm (EM) [default: grid]')
parser.add_argument('--num_gaussians', type=int , default=5, help='number of gaussians for gmm, if grid specify subdivisions, if learned specify actual number[default: 5, for grid it means 125 gaussians]')
parser.add_argument('--gmm_variance', type=float, default=0.04, help='variance for grid gmm, relevant only for grid type')
FLAGS = parser.parse_args()
N_GAUSSIANS = FLAGS.num_gaussians
GMM_TYPE = FLAGS.gmm_type
GMM_VARIANCE = FLAGS.gmm_variance
BATCH_SIZE = FLAGS.batch_size
NUM_POINT = FLAGS.num_point
MAX_EPOCH = FLAGS.max_epoch
BASE_LEARNING_RATE = FLAGS.learning_rate
GPU_INDEX = FLAGS.gpu
MOMENTUM = FLAGS.momentum
OPTIMIZER = FLAGS.optimizer
DECAY_STEP = FLAGS.decay_step
DECAY_RATE = FLAGS.decay_rate
WEIGHT_DECAY = FLAGS.weight_decay
MODEL = importlib.import_module(FLAGS.model) # import network module
MODEL_FILE = os.path.join(BASE_DIR, 'models', FLAGS.model+'.py')
#Creat log directory ant prevent over-write by creating numbered subdirectories
LOG_DIR = 'log/modelnet' + str(NUM_CLASSES) + '/' + FLAGS.model + '/'+ GMM_TYPE + str(N_GAUSSIANS) + '_' + FLAGS.log_dir
if not os.path.exists(LOG_DIR):
os.makedirs(LOG_DIR)
else:
print('Log dir already exists! creating a new one..............')
n = 0
while True:
n+=1
new_log_dir = LOG_DIR+'/'+str(n)
if not os.path.exists(new_log_dir):
os.makedirs(new_log_dir)
print('New log dir:'+new_log_dir)
break
FLAGS.log_dir = new_log_dir
LOG_DIR = new_log_dir
os.system('cp %s %s' % (MODEL_FILE, LOG_DIR)) # bkp of model def
os.system('cp train_cls.py %s' % (LOG_DIR)) # bkp of train procedure
pickle.dump(FLAGS, open( os.path.join(LOG_DIR, 'parameters.p'), "wb" ) )
LOG_FOUT = open(os.path.join(LOG_DIR, 'log_train.txt'), 'w')
LOG_FOUT.write(str(FLAGS)+'\n')
LOG_FOUT.write("augmentation RSTJ = " + str((augment_rotation, augment_scale, augment_translation, augment_jitter, augment_outlier))) #log augmentaitons
FAIL_CASES_FOUT = open(os.path.join(LOG_DIR, 'fail_cases.txt'), 'w')
BN_INIT_DECAY = 0.5
BN_DECAY_DECAY_RATE = 0.5
BN_DECAY_DECAY_STEP = float(DECAY_STEP)
BN_DECAY_CLIP = 0.99
LIMIT_GPU = True
MAX_ACCURACY = 0.0
MAX_CLASS_ACCURACY = 0.0
def log_string(out_str):
LOG_FOUT.write(out_str+'\n')
LOG_FOUT.flush()
print(out_str)
def get_learning_rate(batch):
learning_rate = tf.train.exponential_decay(
BASE_LEARNING_RATE, # Base learning rate.
batch * BATCH_SIZE, # Current index into the dataset.
DECAY_STEP, # Decay step.
DECAY_RATE, # Decay rate.
staircase=True)
learning_rate = tf.maximum(learning_rate, 0.00001) # CLIP THE LEARNING RATE!
return learning_rate
def get_bn_decay(batch):
bn_momentum = tf.train.exponential_decay(
BN_INIT_DECAY,
batch*BATCH_SIZE,
BN_DECAY_DECAY_STEP,
BN_DECAY_DECAY_RATE,
staircase=True)
bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum)
return bn_decay
def train(gmm):
global MAX_ACCURACY, MAX_CLASS_ACCURACY
# n_fv_features = 7 * len(gmm.weights_)
# Build Graph, train and classify
with tf.Graph().as_default():
with tf.device('/gpu:'+str(GPU_INDEX)):
points_pl, labels_pl, w_pl, mu_pl, sigma_pl = MODEL.placeholder_inputs(BATCH_SIZE, NUM_POINT, gmm )
is_training_pl = tf.placeholder(tf.bool, shape=())
# Note the global_step=batch parameter to minimize.
# That tells the optimizer to helpfully increment the 'batch' parameter for you every time it trains.
batch = tf.Variable(0)
bn_decay = get_bn_decay(batch)
tf.summary.scalar('bn_decay', bn_decay)
# Get model and loss
pred, fv = MODEL.get_model(points_pl, w_pl, mu_pl, sigma_pl, is_training_pl, bn_decay=bn_decay, weigth_decay=WEIGHT_DECAY, add_noise=False, num_classes=NUM_CLASSES)
loss = MODEL.get_loss(pred, labels_pl)
tf.summary.scalar('loss', loss)
# Get accuracy
correct = tf.equal(tf.argmax(pred, 1), tf.to_int64(labels_pl))
accuracy = tf.reduce_sum(tf.cast(correct, tf.float32)) / float(BATCH_SIZE)
tf.summary.scalar('accuracy', accuracy)
# Get training operator
learning_rate = get_learning_rate(batch)
tf.summary.scalar('learning_rate', learning_rate)
if OPTIMIZER == 'momentum':
optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=MOMENTUM)
elif OPTIMIZER == 'adam':
optimizer = tf.train.AdamOptimizer(learning_rate)
train_op = optimizer.minimize(loss, global_step=batch)#, aggregation_method = tf.AggregationMethod.EXPERIMENTAL_TREE) #consider using: tf.AggregationMethod.EXPERIMENTAL_ACCUMULATE_N
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Create a session
sess = tf_util.get_session(GPU_INDEX, limit_gpu=LIMIT_GPU)
# Add summary writers
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'train'), sess.graph)
test_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'test'))
# Init variables
init = tf.global_variables_initializer()
sess.run(init, {is_training_pl: True})
ops = {'points_pl': points_pl,
'labels_pl': labels_pl,
'w_pl': w_pl,
'mu_pl': mu_pl,
'sigma_pl': sigma_pl,
'is_training_pl': is_training_pl,
'fv': fv,
'pred': pred,
'loss': loss,
'train_op': train_op,
'merged': merged,
'step': batch}
for epoch in range(MAX_EPOCH):
log_string('**** EPOCH %03d ****' % (epoch))
sys.stdout.flush()
train_one_epoch(sess, ops, gmm, train_writer)
acc, acc_avg_cls = eval_one_epoch(sess, ops, gmm, test_writer)
# Save the variables to disk.
if epoch % 10 == 0:
save_path = saver.save(sess, os.path.join(LOG_DIR, "model.ckpt"))
log_string("Model saved in file: %s" % save_path)
if acc > MAX_ACCURACY:
MAX_ACCURACY = acc
MAX_CLASS_ACCURACY = acc_avg_cls
log_string("Best test accuracy: %f" % MAX_ACCURACY)
log_string("Best test class accuracy: %f" % MAX_CLASS_ACCURACY)
def train_one_epoch(sess, ops, gmm, train_writer):
""" ops: dict mapping from string to tf ops """
is_training = True
# Shuffle train files
train_file_idxs = np.arange(0, len(TRAIN_FILES))
np.random.shuffle(train_file_idxs)
for fn in range(len(TRAIN_FILES)):
log_string('----' + str(fn) + '-----')
current_data, current_label = provider.loadDataFile(TRAIN_FILES[train_file_idxs[fn]], compensate = False)
# points_idx = range(0,NUM_POINT)
points_idx = np.random.choice(range(0,2048),NUM_POINT)
current_data = current_data[:, points_idx, :]
current_data, current_label, _ = provider.shuffle_data(current_data, np.squeeze(current_label))
current_label = np.squeeze(current_label)
file_size = current_data.shape[0]
num_batches = file_size / BATCH_SIZE
total_correct = 0
total_seen = 0
loss_sum = 0
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx + 1) * BATCH_SIZE
# Augment batched point clouds by rotation and jittering
augmented_data = current_data[start_idx:end_idx, :, :]
if augment_scale:
augmented_data = provider.scale_point_cloud(augmented_data, smin=0.66, smax=1.5)
if augment_rotation:
augmented_data = provider.rotate_point_cloud(augmented_data)
if augment_translation:
augmented_data = provider.translate_point_cloud(augmented_data, tval = 0.2)
if augment_jitter:
augmented_data = provider.jitter_point_cloud(augmented_data, sigma=0.01,
clip=0.05) # default sigma=0.01, clip=0.05
if augment_outlier:
augmented_data = provider.insert_outliers_to_point_cloud(augmented_data, outlier_ratio=0.02)
feed_dict = {ops['points_pl']: augmented_data,
ops['labels_pl']: current_label[start_idx:end_idx],
ops['w_pl']: gmm.weights_,
ops['mu_pl']: gmm.means_,
ops['sigma_pl']: np.sqrt(gmm.covariances_),
ops['is_training_pl']: is_training, }
summary, step, _, loss_val, pred_val = sess.run([ops['merged'], ops['step'],
ops['train_op'], ops['loss'], ops['pred']],
feed_dict=feed_dict)
train_writer.add_summary(summary, step)
pred_val = np.argmax(pred_val, 1)
correct = np.sum(pred_val == current_label[start_idx:end_idx])
total_correct += correct
total_seen += BATCH_SIZE
loss_sum += loss_val
log_string('mean loss: %f' % (loss_sum / float(num_batches)))
log_string('accuracy: %f' % (total_correct / float(total_seen)))
def eval_one_epoch(sess, ops, gmm, test_writer):
""" ops: dict mapping from string to tf ops """
is_training = False
total_correct = 0
total_seen = 0
loss_sum = 0
total_seen_class = [0 for _ in range(NUM_CLASSES)]
total_correct_class = [0 for _ in range(NUM_CLASSES)]
fail_cases_true_labels_final = []
fail_cases_false_labes_final = []
fail_cases_idx_final = []
# points_idx = np.random.choice(range(0, 2048), NUM_POINT)
points_idx = range(NUM_POINT)
for fn in range(len(TEST_FILES)):
log_string('----' + str(fn) + '-----')
current_data, current_label = provider.loadDataFile(TEST_FILES[fn], compensate=False)
current_data = current_data[:, points_idx, :]
current_label = np.squeeze(current_label)
file_size = current_data.shape[0]
num_batches = file_size / BATCH_SIZE
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx + 1) * BATCH_SIZE
feed_dict = {ops['points_pl']: current_data[start_idx:end_idx, :, :] ,
ops['labels_pl']: current_label[start_idx:end_idx],
ops['w_pl']: gmm.weights_,
ops['mu_pl']: gmm.means_,
ops['sigma_pl']: np.sqrt(gmm.covariances_),
ops['is_training_pl']: is_training}
summary, step, loss_val, pred_val = sess.run([ops['merged'], ops['step'],
ops['loss'], ops['pred']], feed_dict=feed_dict)
test_writer.add_summary(summary, step)
pred_val = np.argmax(pred_val, 1)
correct = np.sum(pred_val == current_label[start_idx:end_idx])
#Find the fail cases
batch_current_label = current_label[start_idx:end_idx]
false_idx = pred_val != batch_current_label
fail_cases_true_labels = batch_current_label[np.where(false_idx)] if batch_idx==0 else np.concatenate([fail_cases_true_labels,batch_current_label[np.where(false_idx)]] )
fail_cases_false_labes = pred_val[np.where(false_idx)] if batch_idx==0 else np.concatenate([fail_cases_false_labes, pred_val[np.where(false_idx)]])
fail_cases_idx = false_idx if batch_idx == 0 else np.concatenate([fail_cases_idx, false_idx])
total_correct += correct
total_seen += BATCH_SIZE
loss_sum += (loss_val * BATCH_SIZE)
for i in range(start_idx, end_idx):
l = current_label[i]
total_seen_class[l] += 1
total_correct_class[l] += (pred_val[i - start_idx] == l)
fail_cases_true_labels_final.append(fail_cases_true_labels)
fail_cases_false_labes_final.append(fail_cases_false_labes)
fail_cases_idx_final.append(fail_cases_idx)
acc = total_correct / float(total_seen)
acc_avg_cls = np.mean(np.array(total_correct_class) / np.array(total_seen_class, dtype=np.float))
log_string('eval mean loss: %f' % (loss_sum / float(total_seen)))
log_string('eval accuracy: %f' % (acc))
log_string('eval avg class acc: %f' % (acc_avg_cls))
FAIL_CASES_FOUT.write('True:' + str(fail_cases_true_labels) + '\n')
FAIL_CASES_FOUT.write('Pred:' + str(fail_cases_false_labes) + '\n')
FAIL_CASES_FOUT.write('Idx:' + str(fail_cases_idx) + '\n')
FAIL_CASES_FOUT.flush()
dump_dic = {'true_labels': fail_cases_true_labels_final,
'false_pred_labels': fail_cases_false_labes_final,
'idxs': fail_cases_idx_final}
# pickle.dump([fail_cases_true_labels, fail_cases_false_labes], open(os.path.join(LOG_DIR, 'fail_cases.p'), "wb"))
pickle.dump(dump_dic, open(os.path.join(LOG_DIR, 'fail_cases.p'), "wb"))
return (acc, acc_avg_cls)
def export_visualizations(gmm, log_dir):
"""
Visualizes and saves the images of the confusion matrix and fv representations
:param gmm: instance of sklearn GaussianMixture (GMM) object Gauassian mixture model
:param log_dir: path to the trained model
:return None (exports images)
"""
# load the model
model_checkpoint = os.path.join(log_dir, "model.ckpt")
if not(os.path.isfile(model_checkpoint+".meta")):
raise ValueError("No log folder availabe with name " + str(log_dir))
# reBuild Graph
with tf.Graph().as_default():
with tf.device('/gpu:'+str(GPU_INDEX)):
points_pl, labels_pl, w_pl, mu_pl, sigma_pl, = MODEL.placeholder_inputs(BATCH_SIZE, NUM_POINT, gmm,)
is_training_pl = tf.placeholder(tf.bool, shape=())
# Get model and loss
pred, fv = MODEL.get_model(points_pl, w_pl, mu_pl, sigma_pl, is_training_pl, num_classes=NUM_CLASSES)
ops = {'points_pl': points_pl,
'labels_pl': labels_pl,
'w_pl': w_pl,
'mu_pl': mu_pl,
'sigma_pl': sigma_pl,
'is_training_pl': is_training_pl,
'pred': pred,
'fv': fv}
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Create a session
sess = tf_util.get_session(GPU_INDEX, limit_gpu=LIMIT_GPU)
# Restore variables from disk.
saver.restore(sess, model_checkpoint)
print("Model restored.")
# Load the test data
for fn in range(len(TEST_FILES)):
log_string('----' + str(fn) + '-----')
current_data, current_label = provider.loadDataFile(TEST_FILES[fn])
current_data = current_data[:, 0:NUM_POINT, :]
current_label = np.squeeze(current_label)
file_size = current_data.shape[0]
num_batches = file_size / BATCH_SIZE
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx + 1) * BATCH_SIZE
feed_dict = {ops['points_pl']: current_data[start_idx:end_idx, :, :],
ops['labels_pl']: current_label[start_idx:end_idx],
ops['w_pl']: gmm.weights_,
ops['mu_pl']: gmm.means_,
ops['sigma_pl']: np.sqrt(gmm.covariances_),
ops['is_training_pl']: False}
pred_label, fv_data = sess.run([ops['pred'], ops['fv']], feed_dict=feed_dict)
pred_label = np.argmax(pred_label, 1)
all_fv_data = fv_data if (fn==0 and batch_idx==0) else np.concatenate([all_fv_data, fv_data],axis=0)
true_labels = current_label[start_idx:end_idx] if (fn==0 and batch_idx==0) else np.concatenate([true_labels, current_label[start_idx:end_idx]],axis=0)
all_pred_labels = pred_label if (fn==0 and batch_idx==0) else np.concatenate([all_pred_labels, pred_label],axis=0)
# Export Confusion Matrix
visualization.visualize_confusion_matrix(true_labels, all_pred_labels, classes=LABEL_MAP, normalize=False, export=True,
display=False, filename=os.path.join(log_dir,'confusion_mat'), n_classes=NUM_CLASSES)
# Export Fishre Vector Visualization
label_tags = [LABEL_MAP[i] for i in true_labels]
visualization.visualize_fv(all_fv_data, gmm, label_tags, export=True,
display=False,filename=os.path.join(log_dir,'fisher_vectors'))
# plt.show() #uncomment this to see the images in addition to saving them
print("Confusion matrix and Fisher vectores were saved to /" + str(log_dir))
if __name__ == "__main__":
gmm = utils.get_3d_grid_gmm(subdivisions=[N_GAUSSIANS, N_GAUSSIANS, N_GAUSSIANS], variance=GMM_VARIANCE)
pickle.dump(gmm, open(os.path.join(LOG_DIR, 'gmm.p'), "wb"))
train(gmm)
#export_visualizations(gmm, LOG_DIR,n_model_limit=None)
LOG_FOUT.close()