diff --git a/src/modinv64_impl.h b/src/modinv64_impl.h index 281cdb9117846..15cda3d7327ed 100644 --- a/src/modinv64_impl.h +++ b/src/modinv64_impl.h @@ -220,21 +220,6 @@ static int64_t secp256k1_modinv64_divsteps_62(int64_t eta, uint64_t f0, uint64_t * Implements the divsteps_n_matrix_var function from the explanation. */ static int64_t secp256k1_modinv64_divsteps_62_var(int64_t eta, uint64_t f0, uint64_t g0, secp256k1_modinv64_trans2x2 *t) { - /* inv256[i] = -(2*i+1)^-1 (mod 256) */ - static const uint8_t inv256[128] = { - 0xFF, 0x55, 0x33, 0x49, 0xC7, 0x5D, 0x3B, 0x11, 0x0F, 0xE5, 0xC3, 0x59, - 0xD7, 0xED, 0xCB, 0x21, 0x1F, 0x75, 0x53, 0x69, 0xE7, 0x7D, 0x5B, 0x31, - 0x2F, 0x05, 0xE3, 0x79, 0xF7, 0x0D, 0xEB, 0x41, 0x3F, 0x95, 0x73, 0x89, - 0x07, 0x9D, 0x7B, 0x51, 0x4F, 0x25, 0x03, 0x99, 0x17, 0x2D, 0x0B, 0x61, - 0x5F, 0xB5, 0x93, 0xA9, 0x27, 0xBD, 0x9B, 0x71, 0x6F, 0x45, 0x23, 0xB9, - 0x37, 0x4D, 0x2B, 0x81, 0x7F, 0xD5, 0xB3, 0xC9, 0x47, 0xDD, 0xBB, 0x91, - 0x8F, 0x65, 0x43, 0xD9, 0x57, 0x6D, 0x4B, 0xA1, 0x9F, 0xF5, 0xD3, 0xE9, - 0x67, 0xFD, 0xDB, 0xB1, 0xAF, 0x85, 0x63, 0xF9, 0x77, 0x8D, 0x6B, 0xC1, - 0xBF, 0x15, 0xF3, 0x09, 0x87, 0x1D, 0xFB, 0xD1, 0xCF, 0xA5, 0x83, 0x19, - 0x97, 0xAD, 0x8B, 0xE1, 0xDF, 0x35, 0x13, 0x29, 0xA7, 0x3D, 0x1B, 0xF1, - 0xEF, 0xC5, 0xA3, 0x39, 0xB7, 0xCD, 0xAB, 0x01 - }; - /* Transformation matrix; see comments in secp256k1_modinv64_divsteps_62. */ uint64_t u = 1, v = 0, q = 0, r = 1; uint64_t f = f0, g = g0, m; @@ -265,17 +250,28 @@ static int64_t secp256k1_modinv64_divsteps_62_var(int64_t eta, uint64_t f0, uint tmp = f; f = g; g = -tmp; tmp = u; u = q; q = -tmp; tmp = v; v = r; r = -tmp; + /* Use a formula to cancel out up to 6 bits of g. Also, no more than i can be cancelled + * out (as we'd be done before that point), and no more than eta+1 can be done as its + * will flip again once that happens. */ + limit = ((int)eta + 1) > i ? i : ((int)eta + 1); + VERIFY_CHECK(limit > 0 && limit <= 62); + /* m is a mask for the bottom min(limit, 6) bits. */ + m = (UINT64_MAX >> (64 - limit)) & 63U; + /* Find what multiple of f must be added to g to cancel its bottom min(limit, 6) + * bits. */ + w = (f * g * (f * f - 2)) & m; + } else { + /* In this branch, use a simpler formula that only lets us cancel up to 4 bits of g, as + * eta tends to be smaller here. */ + limit = ((int)eta + 1) > i ? i : ((int)eta + 1); + VERIFY_CHECK(limit > 0 && limit <= 62); + /* m is a mask for the bottom min(limit, 4) bits. */ + m = (UINT64_MAX >> (64 - limit)) & 15U; + /* Find what multiple of f must be added to g to cancel its bottom min(limit, 4) + * bits. */ + w = f + (((f + 1) & 4) << 1); + w = (-w * g) & m; } - /* eta is now >= 0. In what follows we're going to cancel out the bottom bits of g. No more - * than i can be cancelled out (as we'd be done before that point), and no more than eta+1 - * can be done as its sign will flip once that happens. */ - limit = ((int)eta + 1) > i ? i : ((int)eta + 1); - /* m is a mask for the bottom min(limit, 8) bits (our table only supports 8 bits). */ - VERIFY_CHECK(limit > 0 && limit <= 62); - m = (UINT64_MAX >> (64 - limit)) & 255U; - /* Find what multiple of f must be added to g to cancel its bottom min(limit, 8) bits. */ - w = (g * inv256[(f >> 1) & 127]) & m; - /* Do so. */ g += f * w; q += u * w; r += v * w;