-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathautoencoder.py
175 lines (130 loc) · 6.64 KB
/
autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import numpy as np
import tensorflow as tf
from sklearn.linear_model import LogisticRegression
from model import autoencoder,decode, variable_summaries
import argparse
## Data- MNIST
from tensorflow.examples.tutorials.mnist import input_data
mnist=input_data.read_data_sets(train_dir="/tmp/data/",one_hot=True)
def train(args):
##parameters
n_steps=args.n_steps
n_input=args.n_input
batch_size=args.batch_size
dropout_constant=args.dropout_constant
## Underlying graph
graph = tf.Graph()
with graph.as_default():
#data
with tf.name_scope('input'):
x = tf.placeholder(tf.float32, [None, n_input], name='x-input')
with tf.name_scope('dropout'):
keep_prob = tf.placeholder(tf.float32)
tf.summary.scalar('dropout_keep_probability', keep_prob)
with tf.name_scope('noise'):
noise_std = tf.placeholder(tf.float32)
tf.summary.scalar('dropout_keep_probability', noise_std)
#model
code, reconstruction=autoencoder(x,dropout=keep_prob, noise_std=noise_std)
#loss
with tf.name_scope('MSE_loss'):
loss=tf.reduce_sum(tf.square(x - reconstruction))
global_step = tf.Variable(0) # count the number of steps taken.
learning_rate = tf.train.exponential_decay(0.01, global_step, 100, 0.91)
optimizer=tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss, global_step=global_step)
tf.summary.scalar("loss",loss)
#logging
log_dir=args.log_dir
if tf.gfile.Exists(log_dir):
tf.gfile.DeleteRecursively(log_dir)
tf.gfile.MakeDirs(log_dir)
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(log_dir + '/train',graph=graph)
test_writer = tf.summary.FileWriter(log_dir + '/test')
#training
sess = tf.InteractiveSession(graph=graph)
tf.global_variables_initializer().run()
mean_img_train = np.mean(mnist.train.images[:50000], axis=0)
mean_img_validation= np.mean(mnist.train.images[50000:55000], axis=0)
x_valid=[img-mean_img_validation for img in mnist.train.images][50000:55000]
for i in range(n_steps):
if i %10==0:
#test error
cost,summary=sess.run([loss,merged], feed_dict={x:x_valid,keep_prob:1.0, noise_std:0})
test_writer.add_summary(summary, i)
print "Loss at step %d: %.1f" %(i,cost)
else:
# Record train set summaries and train
offset = (i * batch_size) % (50000 - batch_size)
# Generate a minibatch.
batch_data = mnist.train.images[offset:(offset + batch_size), :]
x_batch= np.array([img - mean_img_train for img in batch_data])
# Record execution stats (every 100th step)
if i % 100 == 99:
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
_,summary= sess.run([optimizer,merged],
feed_dict={x:x_batch, keep_prob:dropout_constant, noise_std:0.05},
options=run_options,
run_metadata=run_metadata)
train_writer.add_run_metadata(run_metadata, 'step%03d' % i)
train_writer.add_summary(summary, i)
print('Adding run metadata for', i)
else:
_,cost,summary=sess.run([optimizer, loss,merged],
feed_dict={x:x_batch, keep_prob:dropout_constant, noise_std:0.05})
train_writer.add_summary(summary, i)
train_writer.close()
test_writer.close()
print ("For Autoencoder tensorboard logs run 'tensorboard --logdir=%s'" %log_dir)
#Autoencoder Benchmarking
#Embeddings from encoded train set
train_size=55000
mean_img_train = np.mean(mnist.train.images[:train_size], axis=0)
for i in range(train_size/100):
step=i*100
x_mnist_train, y_mnist_train=mnist.train.images[step:step+100],mnist.train.labels[step:step+100]
x_mnist_train_norm = np.array([img - mean_img_train for img in x_mnist_train])
new_embedds=sess.run(code, feed_dict={x: x_mnist_train_norm, keep_prob:1, noise_std:0})
if i ==0:
train_embedds=new_embedds
else:
train_embedds=np.concatenate((train_embedds,new_embedds),axis=0)
#Multiclass LogRegression
clf=LogisticRegression(multi_class='multinomial',solver='lbfgs')
clf.fit(train_embedds, np.argmax(mnist.train.labels[:train_size],axis=1))
#Embeddings from encoded train set
test_size=10000
mean_img_test = np.mean(mnist.test.images, axis=0)
for i in range(test_size/100):
step=i*100
x_mnist_test, y_test=mnist.test.images[step:step+100],mnist.test.labels[step:step+100]
x_mnist_test_norm = np.array([img - mean_img_train for img in x_mnist_test])
new_embedds=sess.run(code, feed_dict={x: x_mnist_test_norm,keep_prob:1, noise_std:0})
if i ==0:
test_embedds=new_embedds
else:
test_embedds=np.concatenate((test_embedds,new_embedds),axis=0)
#LogRegression Accuracy
accuracy=np.mean(clf.predict(test_embedds)==np.argmax(mnist.test.labels[:test_size],axis=1))
print('Accuracy: %.2f%%' %(accuracy*100))
def parse_args():
desc = "TensorFlow implementation of 'Denoising Autoencoder'"
parser = argparse.ArgumentParser(description=desc)
parser.add_argument('--n_steps', type=int, default=200,
help='number of batches to train over')
parser.add_argument('--batch_size', type=int, default=128,
help='size of each minibatch')
parser.add_argument('--n_input', type=int, default=784,
help='image side lenght')
parser.add_argument('--dropout_constant', type=float, default=0.8,
help='fraction of nodes kept in the dropout layer')
parser.add_argument('--log_dir', type=str, default='/tmp/auto/',
help='directory where to save tensorboard logs')
args = parser.parse_args()
return args
def main():
args = parse_args()
train(args)
if __name__ == '__main__':
main()