-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcal_fst.py
78 lines (66 loc) · 2.89 KB
/
cal_fst.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# -*- coding: utf-8 -*-
"""
Created on Sun Mar 8 10:38:45 2020
@author: YudongCai
@Email: [email protected]
"""
import click
import numpy as np
import pandas as pd
import allel
def getAC(genotypes, variant_selection, sample_selection):
return genotypes.subset(variant_selection, sample_selection).count_alleles()
@click.command()
@click.option('--vcffile')
@click.option('--pop1', help='sample ID list')
@click.option('--pop2', help='sample ID list')
@click.option('--binwidth', type=int, default=50000, help='滑动窗口大小')
@click.option('--stepsize', type=int, default=10000, help='滑动窗口步长')
@click.option('--outprefix')
def main(vcffile, pop1, pop2, binwidth, stepsize, outprefix):
"""
计算pop1和pop2之间的Fst
using the method of Hudson (1992) elaborated by Bhatia et al. (2013).
"""
pop1 = [x.strip() for x in open(pop1)]
pop2 = [x.strip() for x in open(pop2)]
callset = allel.read_vcf(vcffile)
allsamples = callset['samples']
genotypes = allel.GenotypeChunkedArray(callset['calldata/GT'])
variant_selection = np.full((genotypes.shape[0]+1), True) # 选择vcf中的全部位点
sample_selection = [True if x in pop1 else False for x in allsamples]
ac1 = getAC(genotypes, variant_selection, sample_selection)
sample_selection = [True if x in pop2 else False for x in allsamples]
ac2 = getAC(genotypes, variant_selection, sample_selection)
num, den = allel.hudson_fst(ac1, ac2)
fst = num / den
meanFst = np.sum(num) / np.sum(den)
print('meanFst: %s' % meanFst)
chrom = callset['variants/CHROM']
pos = callset['variants/POS']
df = pd.DataFrame({'chrom': chrom, 'pos': pos, 'hudson_Fst': fst})
df.to_csv(f'{outprefix}_persite.tsv.gz', sep='\t', index=False, na_rep='nan', compression='gzip')
df['num'] = num
df['den'] = den
# sliding bins
bdf = []
for offset in range(0, binwidth, stepsize):
df['bin_index'] = ((df['pos'].values - 1) - offset) // binwidth
for group_name, gdf in df.groupby(by=['chrom', 'bin_index']):
chrom, bin_index = group_name
start = bin_index * binwidth + offset + 1
if start < 0: # 开头几个窗口长度不足的就直接跳过
continue
end = start + binwidth - 1
n_snp = gdf.shape[0]
sum_num = gdf['num'].sum()
sum_den = gdf['den'].sum()
if sum_den > 0:
meanFst = sum_num / sum_den
else:
meanFst = np.nan
bdf.append([chrom, start, end, n_snp, meanFst])
bdf = pd.DataFrame(bdf, columns=['chrom', 'start', 'end', 'n_snp', 'meanFst']).sort_values(by=['chrom', 'start'])
bdf.to_csv(f'{outprefix}_meanFst.tsv.gz', index=False, compression='gzip', sep='\t', float_format='%.3f')
if __name__ == '__main__':
main()