-
Notifications
You must be signed in to change notification settings - Fork 4
/
AnimationStructure.py
498 lines (355 loc) · 12.6 KB
/
AnimationStructure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
import numpy as np
try:
from . import Animation
except:
import Animation
""" Maya Functions """
def load_from_maya(root):
"""
Load joint parents and names from maya
Parameters
----------
root : PyNode
Root Maya Node
Returns
-------
(names, parents) : ([str], (J) ndarray)
List of joint names and array
of indices representing the parent
joint for each joint J.
Joint index -1 is used to represent
that there is no parent joint
"""
import pymel.core as pm
names = []
parents = []
def unload_joint(j, parents, par):
id = len(names)
names.append(j)
parents.append(par)
children = [c for c in j.getChildren() if
isinstance(c, pm.nt.Transform) and
not isinstance(c, pm.nt.Constraint) and
not any(pm.listRelatives(c, s=True)) and
(any(pm.listRelatives(c, ad=True, ap=False, type='joint')) or isinstance(c, pm.nt.Joint))]
map(lambda c: unload_joint(c, parents, id), children)
unload_joint(root, parents, -1)
return (names, parents)
""" Family Functions """
def joints(parents):
"""
Parameters
----------
parents : (J) ndarray
parents array
Returns
-------
joints : (J) ndarray
Array of joint indices
"""
return np.arange(len(parents), dtype=int)
def joints_list(parents):
"""
Parameters
----------
parents : (J) ndarray
parents array
Returns
-------
joints : [ndarray]
List of arrays of joint idices for
each joint
"""
return list(joints(parents)[:,np.newaxis])
def parents_list(parents):
"""
Parameters
----------
parents : (J) ndarray
parents array
Returns
-------
parents : [ndarray]
List of arrays of joint idices for
the parents of each joint
"""
return list(parents[:,np.newaxis])
def children_list(parents):
"""
Parameters
----------
parents : (J) ndarray
parents array
Returns
-------
children : [ndarray]
List of arrays of joint indices for
the children of each joint
"""
def joint_children(i):
return [j for j, p in enumerate(parents) if not isinstance(p, tuple) and p == i] # todo: 'isinstance' is a hack. change later
return list(map(lambda j: np.array(joint_children(j)), joints(parents)))
def descendants_list(parents):
"""
Parameters
----------
parents : (J) ndarray
parents array
Returns
-------
descendants : [ndarray]
List of arrays of joint idices for
the descendants of each joint
"""
children = children_list(parents)
def joint_descendants(i):
return sum([joint_descendants(j) for j in children[i]], list(children[i]))
return list(map(lambda j: np.array(joint_descendants(j)), joints(parents)))
def ancestors_list(parents):
"""
Parameters
----------
parents : (J) ndarray
parents array
Returns
-------
ancestors : [ndarray]
List of arrays of joint idices for
the ancestors of each joint
"""
decendants = descendants_list(parents)
def joint_ancestors(i):
return [j for j in joints(parents) if i in decendants[j]]
return list(map(lambda j: np.array(joint_ancestors(j)), joints(parents)))
""" Mask Functions """
def mask(parents, filter):
"""
Constructs a Mask for a give filter
A mask is a (J, J) ndarray truth table for a given
condition over J joints. For example there
may be a mask specifying if a joint N is a
child of another joint M.
This could be constructed into a mask using
`m = mask(parents, children_list)` and the condition
of childhood tested using `m[N, M]`.
Parameters
----------
parents : (J) ndarray
parents array
filter : (J) ndarray -> [ndarray]
function that outputs a list of arrays
of joint indices for some condition
Returns
-------
mask : (N, N) ndarray
boolean truth table of given condition
"""
m = np.zeros((len(parents), len(parents))).astype(bool)
jnts = joints(parents)
fltr = filter(parents)
for i,f in enumerate(fltr): m[i,:] = np.any(jnts[:,np.newaxis] == f[np.newaxis,:], axis=1)
return m
def joints_mask(parents): return np.eye(len(parents)).astype(bool)
def children_mask(parents): return mask(parents, children_list)
def parents_mask(parents): return mask(parents, parents_list)
def descendants_mask(parents): return mask(parents, descendants_list)
def ancestors_mask(parents): return mask(parents, ancestors_list)
""" Search Functions """
def joint_chain_ascend(parents, start, end):
chain = []
while start != end:
chain.append(start)
start = parents[start]
chain.append(end)
return np.array(chain, dtype=int)
""" Constraints """
def constraints(anim, **kwargs):
"""
Constraint list for Animation
This constraint list can be used in the
VerletParticle solver to constrain
a animation global joint positions.
Parameters
----------
anim : Animation
Input animation
masses : (F, J) ndarray
Optional list of masses
for joints J across frames F
defaults to weighting by
vertical height
Returns
-------
constraints : [(int, int, (F, J) ndarray, (F, J) ndarray, (F, J) ndarray)]
A list of constraints in the format:
(Joint1, Joint2, Masses1, Masses2, Lengths)
"""
masses = kwargs.pop('masses', None)
children = children_list(anim.parents)
constraints = []
points_offsets = Animation.offsets_global(anim)
points = Animation.positions_global(anim)
if masses is None:
masses = 1.0 / (0.1 + np.absolute(points_offsets[:,1]))
masses = masses[np.newaxis].repeat(len(anim), axis=0)
for j in xrange(anim.shape[1]):
""" Add constraints between all joints and their children """
for c0 in children[j]:
dists = np.sum((points[:, c0] - points[:, j])**2.0, axis=1)**0.5
constraints.append((c0, j, masses[:,c0], masses[:,j], dists))
""" Add constraints between all children of joint """
for c1 in children[j]:
if c0 == c1: continue
dists = np.sum((points[:, c0] - points[:, c1])**2.0, axis=1)**0.5
constraints.append((c0, c1, masses[:,c0], masses[:,c1], dists))
return constraints
""" Graph Functions """
def graph(anim):
"""
Generates a weighted adjacency matrix
using local joint distances along
the skeletal structure.
Joints which are not connected
are assigned the weight `0`.
Joints which actually have zero distance
between them, but are still connected, are
perturbed by some minimal amount.
The output of this routine can be used
with the `scipy.sparse.csgraph`
routines for graph analysis.
Parameters
----------
anim : Animation
input animation
Returns
-------
graph : (N, N) ndarray
weight adjacency matrix using
local distances along the
skeletal structure from joint
N to joint M. If joints are not
directly connected are assigned
the weight `0`.
"""
graph = np.zeros(anim.shape[1], anim.shape[1])
lengths = np.sum(anim.offsets**2.0, axis=1)**0.5 + 0.001
for i,p in enumerate(anim.parents):
if p == -1: continue
graph[i,p] = lengths[p]
graph[p,i] = lengths[p]
return graph
def distances(anim):
"""
Generates a distance matrix for
pairwise joint distances along
the skeletal structure
Parameters
----------
anim : Animation
input animation
Returns
-------
distances : (N, N) ndarray
array of pairwise distances
along skeletal structure
from some joint N to some
joint M
"""
distances = np.zeros((anim.shape[1], anim.shape[1]))
generated = distances.copy().astype(bool)
joint_lengths = np.sum(anim.offsets**2.0, axis=1)**0.5
joint_children = children_list(anim)
joint_parents = parents_list(anim)
def find_distance(distances, generated, prev, i, j):
""" If root, identity, or already generated, return """
if j == -1: return (0.0, True)
if j == i: return (0.0, True)
if generated[i,j]: return (distances[i,j], True)
""" Find best distances along parents and children """
par_dists = [(joint_lengths[j], find_distance(distances, generated, j, i, p)) for p in joint_parents[j] if p != prev]
out_dists = [(joint_lengths[c], find_distance(distances, generated, j, i, c)) for c in joint_children[j] if c != prev]
""" Check valid distance and not dead end """
par_dists = [a + d for (a, (d, f)) in par_dists if f]
out_dists = [a + d for (a, (d, f)) in out_dists if f]
""" All dead ends """
if (out_dists + par_dists) == []: return (0.0, False)
""" Get minimum path """
dist = min(out_dists + par_dists)
distances[i,j] = dist; distances[j,i] = dist
generated[i,j] = True; generated[j,i] = True
for i in xrange(anim.shape[1]):
for j in xrange(anim.shape[1]):
find_distance(distances, generated, -1, i, j)
return distances
def edges(parents):
"""
Animation structure edges
Parameters
----------
parents : (J) ndarray
parents array
Returns
-------
edges : (M, 2) ndarray
array of pairs where each
pair contains two indices of a joints
which corrisponds to an edge in the
joint structure going from parent to child.
"""
return np.array(list(zip(parents, joints(parents)))[1:])
def incidence(parents):
"""
Incidence Matrix
Parameters
----------
parents : (J) ndarray
parents array
Returns
-------
incidence : (N, M) ndarray
Matrix of N joint positions by
M edges which each entry is either
1 or -1 and multiplication by the
joint positions returns the an
array of vectors along each edge
of the structure
"""
es = edges(parents)
inc = np.zeros((len(parents)-1, len(parents))).astype(np.int)
for i, e in enumerate(es):
inc[i,e[0]] = 1
inc[i,e[1]] = -1
return inc.T
def get_sorted_order_internal(sorted_order, parent_out_idx, parent_in_idx, children):
out_idx = parent_out_idx # return same index in case there are no children
for child in children[parent_in_idx]:
out_idx = out_idx + 1
sorted_order[out_idx] = child
sorted_order, out_idx = get_sorted_order_internal(sorted_order, out_idx, child, children)
return sorted_order, out_idx
def get_sorted_order(parents):
""" sorted order is a dfs order of the skeleton. REQUIRED for bvh creation. """
parents = np.array(parents) # if type(parents)==list, make it an np.array. if it's already an np.array, this line does not change it.
children = children_list(parents)
sorted_order = np.zeros(parents.shape, dtype=int)
root_idx = np.where(parents == -1)[0][0]
sorted_order[0] = root_idx
sorted_order, _ = get_sorted_order_internal(sorted_order, 0, root_idx, children)
return sorted_order
def expand_kinematic_chain(children, chain_prefix):
youngest_children = children[chain_prefix[-1]]
if len(youngest_children) == 0:
kinematic_chain = [chain_prefix]
else:
kinematic_chain = []
for child in youngest_children:
child_chains = expand_kinematic_chain(children, chain_prefix + [child])
kinematic_chain.extend(child_chains)
return kinematic_chain
def get_kinematic_chain(parents):
parents = np.array(parents) # if type(parents)==list, make it an np.array. if it's already an np.array, this line does not change it.
children = children_list(parents)
root_idx = np.where(parents == -1)[0][0]
# DFS
kinematic_chain = expand_kinematic_chain(children, [root_idx])
return kinematic_chain