-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain_encoder.py
executable file
·366 lines (277 loc) · 13.9 KB
/
train_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import os
import os.path as osp
import sys
import random
from torch import optim
from torch.utils import data
import torch.distributed as dist
from torch.utils.data import TensorDataset
from tqdm import tqdm
from models.encoder_mask import ConditionalMask, ReconLoss, PositionLoss, ContactLabelLoss, GlobalPosLoss
from models.inverse_losses import DiscriminatorLoss, LatentCenterRegularizer, FootContactUnsupervisedLoss
from utils.visualization import motion2bvh_rot
from utils.data import calc_bone_lengths, sample_data, requires_grad, data_sampler
from utils.traits import *
from models.gan import Discriminator
from motion_class import DynamicData
from utils.distributed import (
get_rank,
synchronize,
)
try:
from clearml import Task
except ImportError:
Task = None
try:
from utils.loss_recorder import LossRecorder
except ImportError:
LossRecorder = None
from utils.pre_run import TrainEncoderOptions, load_all_form_checkpoint
def train_enc(args, loader, encoder, e_optim, d_optim, g_ema, device, motion_statics, logger, make_mask,
discriminator, latent_center, normalisation_data):
loader = sample_data(loader)
recon_criteria = ReconLoss(args.loss_type)
pos_loss_local = PositionLoss(motion_statics, True, args.foot, args.use_velocity,
normalisation_data['mean'], normalisation_data['std'], local_frame=args.use_local_pos)
contact_criteria = ContactLabelLoss()
global_pos_criteria = GlobalPosLoss(args)
foot_contact_criteria = FootContactUnsupervisedLoss(motion_statics, normalisation_data, args.glob_pos, args.use_velocity)
discriminator_criteria = DiscriminatorLoss(args, discriminator)
latent_center_criteria = LatentCenterRegularizer(args, latent_center)
pbar = range(args.iter)
mean_path_length = 0
if get_rank() == 0 and not args.on_cluster_training:
pbar = tqdm(pbar, initial=args.start_iter, dynamic_ncols=False, smoothing=0.01, ncols=150)
loss_dict = {}
if args.distributed:
g_module = g_ema.module
e_module = encoder.module
else:
g_module = g_ema
e_module = encoder
ada_aug_p = args.augment_p if args.augment_p > 0 else 0.0
requires_grad(g_ema, False)
zero = torch.tensor(0.).to(device)
from train import d_logistic_loss, get_grad_mean_max, d_r1_loss, g_nonsaturating_loss, g_path_regularize
for idx in pbar:
i = idx + args.start_iter
if i > args.iter:
print("Done!")
break
if args.train_with_generated and random.randint(0, 1) == 0:
noise = torch.randn(args.batch, args.latent, device=device)
with torch.no_grad():
real_img, _, _ = g_ema([noise], input_is_latent=False, return_latents=False)
else:
real_img = next(loader)[0] # joints x coords x frames
real_img = real_img.float() # loader produces doubles (64 bit), where network uses floats (32 bit)
real_img = real_img.transpose(1,2) # joints x coords x frames ==> coords x joints x frames
real_img = real_img.to(device)
# if args.foot:
# real_img = append_foot_contact(args, real_img, edge_rot_dict_general)
######################
# step discriminator #
######################
if args.train_disc and i % args.disc_freq == 0:
disc_mask = make_mask(real_img, indicator_only=True) if args.partial_disc else 1.
requires_grad(encoder, False)
requires_grad(discriminator, True)
fake_img = make_mask(real_img)
_, rec_latent, _ = encoder(fake_img)
rec_img, _, _ = g_ema([rec_latent], input_is_latent=True)
real_img_aug = real_img
fake_pred, rec_latent = discriminator(disc_mask * rec_img)
real_pred, rec_real_latent = discriminator(disc_mask * real_img_aug)
d_loss = d_logistic_loss(real_pred, fake_pred)
loss_dict["d"] = d_loss
loss_dict["real_score"] = real_pred.mean()
loss_dict["fake_score"] = fake_pred.mean()
discriminator.zero_grad()
d_loss.backward()
d_optim.step()
d_regularize = (i // args.disc_freq) % args.d_reg_every == 0
if d_regularize:
real_img.requires_grad = True
real_pred, _= discriminator(real_img)
r1_loss = d_r1_loss(real_pred, real_img)
discriminator.zero_grad()
(args.r1 / 2 * r1_loss * args.d_reg_every + 0 * real_pred[0]).backward()
d_optim.step()
real_img.requires_grad_(False)
loss_dict["r1"] = r1_loss
######################
# step encoder #
######################
requires_grad(encoder, True)
requires_grad(discriminator, False)
fake_img = make_mask(real_img)
_, rec_latent = encoder(fake_img)
rec_img, _, _ = g_ema([rec_latent], input_is_latent=True)
if args.train_disc and args.partial_disc:
fake_pred, rec_latent = discriminator(rec_img * disc_mask)
else:
fake_pred, rec_latent = discriminator(rec_img)
rec_img_full = rec_img
real_img_full = real_img
if args.partial_loss:
partial_mask = make_mask(real_img, indicator_only=True)
rec_img = rec_img * partial_mask
real_img = real_img * partial_mask
rec_loss = recon_criteria(rec_img, real_img)
pos_loss = pos_loss_local(rec_img, real_img)
contact_loss = contact_criteria(rec_img, real_img)
global_pos_loss = global_pos_criteria(rec_img, real_img)
foot_contact_loss = foot_contact_criteria(rec_img) if args.lambda_foot_contact > 0. else zero
disc_loss = discriminator_criteria(rec_img) if args.lambda_disc > 0. else zero
reg_loss = latent_center_criteria(rec_latent) if args.lambda_reg > 0. else zero
total_loss = args.lambda_rec * rec_loss +\
args.lambda_pos * pos_loss +\
args.lambda_contact * contact_loss +\
args.lambda_global_pos * global_pos_loss +\
args.lambda_foot_contact * foot_contact_loss +\
args.lambda_disc * disc_loss +\
args.lambda_reg * reg_loss
encoder.zero_grad()
total_loss.backward(retain_graph=True)
e_optim.step()
g_regularize = i % args.g_reg_every == 0
if g_regularize and args.train_disc:
fake_img = make_mask(real_img)
_, latents, _ = encoder(fake_img)
fake_img_path, _, _ = g_ema([latents], input_is_latent=True)
path_loss, mean_path_length, path_lengths = g_path_regularize(
fake_img_path, latents, mean_path_length
)
encoder.zero_grad()
weighted_path_loss = args.path_regularize * args.g_reg_every * path_loss
weighted_path_loss.backward()
e_optim.step()
loss_dict["rec_loss"] = rec_loss.item()
loss_dict["pos_loss"] = pos_loss.item()
loss_dict["total_loss"] = total_loss.item()
loss_dict["contact_loss"] = contact_loss.item()
loss_dict["global_pos_loss"] = global_pos_loss.item()
loss_dict["disc_loss"] = disc_loss.item()
loss_dict["reg_loss"] = reg_loss.item()
loss_dict["foot_contact_loss"] = foot_contact_loss.item()
e_loss_val = total_loss.item()
if get_rank() == 0:
description_str = f"e: {e_loss_val:.4f}; pos: {pos_loss.item():.4f}; rec: {rec_loss.item():.4f}; contact: {contact_loss.item():.4f}; global_pos: {global_pos_loss.item():.4f};"
if isinstance(pbar, tqdm):
pbar.set_description(description_str)
elif i % 100 == 0:
print(f'[{i}/{args.iter}]', description_str)
if args.clearml or args.tensorboard:
for loss_name in loss_dict.keys():
logger.report_scalar("Losses", loss_name, iteration=i, value=loss_dict[loss_name])
if i == 0 or (i + 1) % args.report_every == 0:
motion_all = DynamicData(rec_img.detach().cpu(), motion_statics, use_velocity=args.use_velocity)
motion2bvh_rot(motion_all, osp.join(args.model_save_path, f"bvhs/{i + 1:05d}.bvh"))
if i == 0 or (i+1) % args.report_every == 0:
torch.save(
{
"e": e_module.state_dict(),
"e_optim": e_optim.state_dict(),
"args": args,
},
osp.join(args.model_save_path, f"checkpoint/{str(i).zfill(6)}.pt")
)
def prepare_recorder(args):
if args.clearml:
output_folder = osp.expanduser('~/train_outputs')
os.makedirs(output_folder, exist_ok=True)
task = Task.init(project_name='stylegan2_motion_skeleton',
task_name=args.name, # 'Jasper_all_5K_no_norm_mixing_0p9_conv3_fan_in_revw',
output_uri=output_folder)
logger = task.get_logger()
task_destination = task._get_output_destination_suffix()
images_output_folder = osp.join(output_folder, task_destination, 'images')
animations_output_folder = osp.join(output_folder, task_destination, 'animations')
elif args.tensorboard:
output_folder = os.path.join(args.model_save_path, 'tensorboard_outputs')
os.makedirs(output_folder, exist_ok=True)
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter(output_folder)
logger = LossRecorder(writer)
images_output_folder = osp.join(args.model_save_path, 'images')
animations_output_folder = osp.join(args.model_save_path, 'animations')
else:
output_folder = osp.expanduser('~/tmp')
logger = None
images_output_folder = osp.join(output_folder, 'images')
animations_output_folder = osp.join(output_folder, 'animations')
if not os.path.exists(images_output_folder):
os.makedirs(images_output_folder)
if not os.path.exists(animations_output_folder):
os.makedirs(animations_output_folder)
os.makedirs(args.model_save_path, exist_ok=True)
os.makedirs(osp.join(args.model_save_path, 'checkpoint'), exist_ok=True)
os.makedirs(osp.join(args.model_save_path, 'bvhs'), exist_ok=True)
return logger, images_output_folder, animations_output_folder
def main(args_not_parsed):
parser = TrainEncoderOptions()
args = parser.parse_args(args_not_parsed)
device = args.device
g_ema, discriminator, motion_data, mean_latent, motion_statics , normalisation_data, args = load_all_form_checkpoint(args.ckpt_existing, args, return_motion_data=True)
if args.overfitting:
motion_data = motion_data[:args.overfitting]
traits_class = g_ema.traits_class
if args.n_latent_predict > 1:
args.n_latent_predict = g_ema.n_latent
logger, images_output_folder, animations_output_folder = prepare_recorder(args)
n_gpu = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
args.distributed = n_gpu > 1
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend="nccl", init_method="env://")
synchronize()
args.n_mlp = 8 # num linear layers in the generator's mapping network (z to W)
args.start_iter = 0
encoder = Discriminator(traits_class=traits_class, motion_statics =motion_statics ,
latent_dim=args.latent,
latent_rec_idx=int(args.encoder_latent_rec_idx), n_latent_predict=args.n_latent_predict,
).to(device)
e_reg_ratio = args.d_reg_every / (args.d_reg_every + 1)
d_reg_ratio = args.d_reg_every / (args.d_reg_every + 1)
e_optim = optim.Adam(
encoder.parameters(),
lr=args.d_lr * e_reg_ratio,
betas=(0 ** e_reg_ratio, 0.99 ** e_reg_ratio),
)
d_optim = optim.Adam(
discriminator.parameters(),
lr=args.d_lr * d_reg_ratio,
betas=(0 ** d_reg_ratio, 0.99 ** d_reg_ratio),
) if args.train_disc else None
if args.ckpt is not None:
print("load model:", args.ckpt)
ckpt = torch.load(args.ckpt, map_location=lambda storage, loc: storage)
try:
ckpt_name = os.path.basename(args.ckpt)
args.start_iter = int(os.path.splitext(ckpt_name)[0])
except ValueError:
pass
encoder.load_state_dict(ckpt["e"])
e_optim.load_state_dict(ckpt["e_optim"])
gt_bone_lengths = calc_bone_lengths(motion_data) if args.entity == 'Joint' else None
motion_all = DynamicData(torch.from_numpy(motion_data[0]).transpose(0, 1), motion_statics , use_velocity=args.use_velocity)
motion_path = osp.join(animations_output_folder, 'real_motion.bvh')
motion2bvh_rot(motion_all, motion_path)
if args.clearml:
logger.report_media(title='Animation', series='Ground Truth Motion', iteration=0, local_path=motion_path)
motions_data_torch = torch.from_numpy(motion_data)
dataset = TensorDataset(motions_data_torch)
loader = data.DataLoader(
dataset,
batch_size=args.batch,
sampler=data_sampler(dataset, shuffle=True, distributed=args.distributed),
drop_last=args.overfitting == 0,
)
make_mask = ConditionalMask(args, n_frames=args.n_frames, keep_loc=args.keep_loc, keep_rot=args.keep_rot,
normalisation_data=normalisation_data, noise_level=args.noise_level)
normalisation_data = {'mean': torch.from_numpy(normalisation_data['mean']).to(device),
'std': torch.from_numpy(normalisation_data['std']).to(device)}
train_enc(args, loader, encoder, e_optim, d_optim, g_ema, device, motion_statics , logger, make_mask,
discriminator, mean_latent, normalisation_data)
if __name__ == "__main__":
main(sys.argv[1:])