

#### **PL1167**

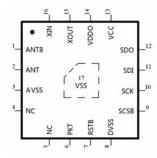
#### Low Power High Performance Single Chip 2.4GHz Transceiver

#### **Product Description:**

PL1167 is a piece of true low power high performance single chip 2.4GHz transceiver, which is designed for operation in the world wide ISM frequency band at 2.400~2.4835GHz.

This single chip wireless transceiver integrated including: RF synthesizer, Power Amplifier, Crystal Oscillator, Modem and etc.

All of the Output Power, Channel Selection, and Protocol can be configured through SPI/I2C Interface.


With built in FHSS and accurate digital RSSI, this transceiver achieves a good capability of anti-interference, so that, it can work under every complicated environment with high performance.


It also support address and data check out; FEC, CRC function; and Auto-Ack & Auto-Resend function.

The output power of the chip can be set up to 5.5dBm and the receive sensitivity can achieve -88dBm.

With on chip regulator and advanced power management function, the current consumption in sleep mode can be reduced to nearly 1uA.

#### **Pin Configuration:**





#### **Key Features:**

- True Low Power High Performance Single Chip 2.4GHz Transceiver
- Built in Hardware Link Layer
- Built in Accurate Digital RSSI
- Support Auto-Ack and Auto-Resend Functions
- Built in Address and Data Checkout, FEC, CRC Functions
- Data Rate over the air: 1Mbps
- Support HFSS
- Support Micro-Strip Inductor and Two Layer PCB Boards
- 1.9 to 3.6V supply range
- Packages: QFN16/TSSOP16
- QFN16 only support SPI Interface
- TSSOP16 support SPI and I2C Interface

#### **Applications:**

- Wireless Mice, keyboards and Game Controllers
- Wireless Data Communication
- Wireless Door Accessing
- Wireless Networks
- Safety and Guard System
- RF Remote Control
- Remote Sensing
- Sports watches and sensors
- Home and commercial automation
- Industrial Sensors
- Industrial and Commercial Short Range Communication
- VoIP headsets
- Toys





### 1 Overview

PL1167 is a piece of true low power high performance single chip 2.4GHz transceiver, which is designed for operation in the world wide ISM frequency band at 2.400~2.4835GHz.

This single chip wireless transceiver integrated including: RF synthesizer, Power Amplifier, Crystal Oscillator, Modem and etc.

All of the Output Power, Channel Selection, and Protocol can be configured through SPI/I2C Interface.

With built in FHSS and accurate digital RSSI, this transceiver achieves a good capability of

anti-interference, so that, it can work under every complicated environment with high performance.

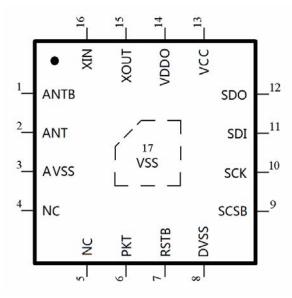
It also support address and data check out; FEC, CRC function; and Auto-Ack & Auto-Resend function.

The output power of the chip can be set up to 5.5dBm and the receive sensitivity can achieve -88dBm.

With on chip regulator and advanced power management function, the current consumption in sleep mode can be reduced to nearly 1uA.

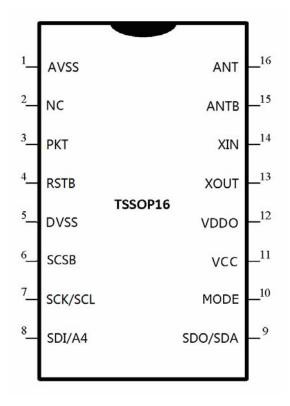
### 2 Features

- True Low Power High Performance Single Chip 2.4GHz Transceiver
- Built in Hardware Link Layer
- Built in Accurate Digital RSSI
- Support Auto-Ack and Auto-Resend Functions
- Built in Address and Data Checkout, FEC, CRC Functions


- Data Rate over the air: 1Mbps
- Support HFSS
- Support Micro-Strip Inductor and Two Layer PCB Boards
- 1.9 to 3.6V supply range
- Packages: QFN16/TSSOP16
- QFN16 only support SPI Interface
- TSSOP16 support SPI and I2C Interface

## 3 Quick Reference Data

| Parameter                           | Value      | Units      |
|-------------------------------------|------------|------------|
| Min Supply Voltage                  | 1.9        | V          |
| Max Output Power                    | 5.5        | dBm        |
| Data Rate                           | 1          | Mbps       |
| Current Consumption (0dBm) @TX Mode | 16         | mA         |
| Current Consumption @RX Mode        | 17         | mA         |
| Operating Temperature Range         | -40 to +85 | $^{\circ}$ |
| RX Sensitivity                      | -88        | dBm        |
| Current Consumption @Sleep Mode     | 1          | uA         |


# 4 Pin Diagrams

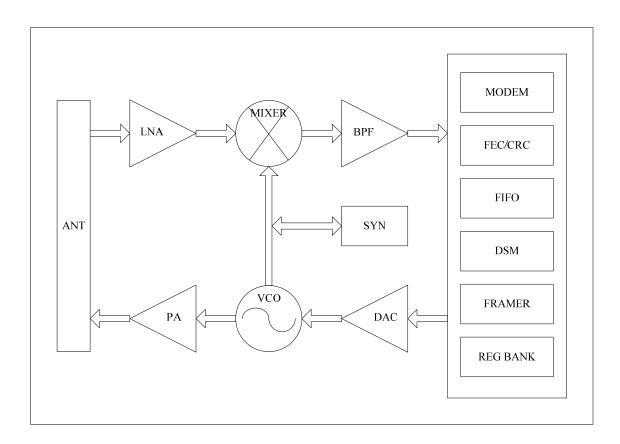
The pin map is shown as below for QFN16.



Note: MODE pin is connected to VSS in the chip, so QFN16 is only supported SPI interface.

The pin map is shown as below for TSSOP16.




# **5 Pin Description**

| Pin(QFN16) | Name | Pin Function   | Description                                               |
|------------|------|----------------|-----------------------------------------------------------|
| 1          | ANTB | RF             | Antenna Interface                                         |
| 2          | ANT  | RF             | Antenna Interface                                         |
| 3,8,17     | VSS  | Power          | Ground (0V)                                               |
| 4,5        | NC   | N/C            | Not Connected                                             |
| 6          | PKT  | Digital Output | Transmit/Receive Packet Status Indicator Bit              |
| 7          | RSTB | Digital Input  | Reset Pin, active low                                     |
| 9          | SCSB | Digital Input  | Enable Input for SPI Interface, active Low                |
|            |      |                | Wakeup from SLEEP state                                   |
| 10         | SCK  | Digital Input  | Clock Input for SPI Interface                             |
| 11         | SDI  | Digital Input  | Data Input for SPI Interface                              |
| 12         | SDO  | Digital Output | Data Output for SPI Interface (tri-state when not active) |
| 13         | VCC  | Power          | Power Supply (3.3V)                                       |
| 14         | VDDO | Power          | 1.8V power output, connect to capacitor                   |
| 15         | XOUT | Analog Output  | Crystal Oscillator Output                                 |
| 16         | XIN  | Analog Input   | Crystal Oscillator Input                                  |

| Pin(TSSOP16) | Name    | Pin Function   | Description                                     |
|--------------|---------|----------------|-------------------------------------------------|
| 1            | AVSS    | Power          | Ground (0V)                                     |
| 2            | NC      | N/C            | Not Connected                                   |
| 3            | PKT     | Digital Output | Transmit/Receive Packet Status Indicator Bit    |
| 4            | RSTB    | Digital Input  | Reset Pin, active low                           |
| 5            | DVSS    | Power          | Ground (0V)                                     |
| 6            | SCSB    | Digital Input  | SPI: Enable Input for SPI Interface, active Low |
|              |         |                | Wakeup from SLEEP state                         |
|              |         |                | I2C: Wakeup from SLEEP state                    |
| 7            | SCK/SCL | Digital Input  | SCK: Clock Input for SPI Interface              |
|              |         |                | SCL: Clock Input for I2C Interface              |
| 8            | SDI/A4  | Digital Input  | SDI: Data Input for SPI Interface               |
|              |         |                | A4: Address bit 4 for I2C Interface             |
| 9            | SDO/SDA | Digital Output | SDO: Data Output for SPI Interface (tri-state   |
|              |         |                | when not active)                                |

| Pin(TSSOP16) | Name | Pin Function  | Description                             |
|--------------|------|---------------|-----------------------------------------|
|              |      |               | SDA: Data I/O for I2C interface         |
| 10           | MODE | Digital Input | Mode Selection:                         |
|              |      |               | VSS: Select SPI Interface               |
|              |      |               | VCC: Select I2C Interface               |
| 11           | VCC  | Power         | Power Supply (3.3V)                     |
| 12           | VDDO | Power         | 1.8V power output, connect to capacitor |
| 13           | XOUT | Analog Output | Crystal Oscillator Output               |
| 14           | XIN  | Analog Input  | Crystal Oscillator Input                |
| 15           | ANTB | RF            | Antenna Interface                       |
| 16           | ANT  | RF            | Antenna Interface                       |

# 6 Block Diagram



## 7 Absolute Maximum Ratings

Absolute maximum ratings are the parameter values or ranges which can cause permanent damage

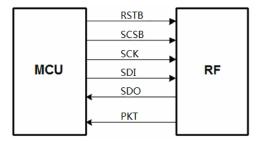
and affect device reliability if exceeded.

| Parameter              | Symbol           | Value             | Units      |
|------------------------|------------------|-------------------|------------|
| Supply Voltage of VCC  | VCC              | -0.3 to +3.6      | V          |
| Supply Voltage of VDDO | VDDO             | -0.3 to +2.5      | V          |
| Input Voltage          | V <sub>IN</sub>  | -0.3 to (VCC+0.3) | V          |
| Output Voltage         | V <sub>OUT</sub> | -0.3 to (VCC+0.3) |            |
| Operating Temperature  | T <sub>OP</sub>  | -40 to +85        | $^{\circ}$ |
| Storage Temperature    | T <sub>ST</sub>  | -40 to +125       | $^{\circ}$ |

Note: These are stress ratings only. Stress beyond these limits may cause permanent damage to the device. Functional operation of the device at these or any conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute maximum rated conditions for extended periods of time may affect device reliability.

## **8 Electrical Characteristics**

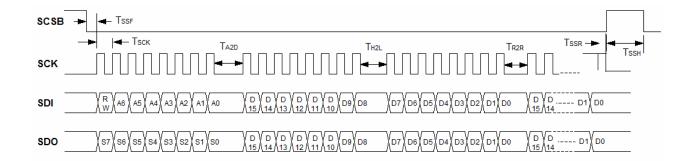
(Conditions: VCC=+3V, VSS=0V, TA= $-40^{\circ}$ C to +85 $^{\circ}$ C)


| Symbol               | Parameter (Condition)      | Notes | Min.   | Тур. | Max.   | Units      |
|----------------------|----------------------------|-------|--------|------|--------|------------|
|                      | Operating Conditions       |       |        |      |        |            |
| VCC                  | Supply voltage of VCC      |       | 1.9    | 3.3  | 3.6    | V          |
| T <sub>OP</sub>      | Operating Temperature      |       | -40    |      | 85     | $^{\circ}$ |
|                      | Digital Input Pin          |       |        |      |        |            |
| V <sub>IH</sub>      | High Level Input Voltage   |       | 0.8VCC |      | 1.2VCC | V          |
| V <sub>IL</sub>      | Low Level Input Voltage    |       | 0      |      | 0.2VCC | V          |
|                      | Digital Output Pin         |       |        |      |        |            |
| V <sub>OH</sub>      | High Level Output Voltage  |       | 0.8VCC |      | VCC    | V          |
| V <sub>OL</sub>      | Low Level Output Voltage   |       | 0      |      | 0.2VCC | V          |
|                      | General RF Conditions      | •     |        |      |        |            |
| f <sub>OP</sub>      | Operating frequency        |       | 2400   |      | 2482   | MHz        |
| f <sub>XTAL</sub>    | Crystal Frequency          |       |        | 12   |        | MHz        |
| $\triangle f_{1M}$   | Frequency Deviation @1Mbps |       |        | 280  |        | KHz        |
| R <sub>GFSK</sub>    | Data Rate                  |       |        | 1    |        | Mbps       |
| F <sub>CHANNEL</sub> | Channel Spacing            |       |        | 1    |        | MHz        |
|                      | Transmitter Operation      |       |        |      |        |            |
| P <sub>RF</sub>      | Maximum Output Power       |       |        | 0    | 5.5    | dBm        |
| P <sub>RFC</sub>     | RF Power Control Range     |       | 18     | 20   | 22     | dB         |
| P <sub>RF1</sub>     | 1st Adj. Channel TX Power  |       |        |      | -20    | dBm        |

| Symbol             | Parameter (Condition)        | Notes | Min. | Тур. | Max. | Units |
|--------------------|------------------------------|-------|------|------|------|-------|
| P <sub>RF2</sub>   | 2nd Adj. Channel TX Power    |       |      |      | -50  | dBm   |
| I <sub>VCC_H</sub> | Power Consumption @High Gain |       |      | 16   |      | mA    |
| I <sub>VCC_L</sub> | Power Consumption @Low Gain  |       |      | 12   |      | mA    |
|                    | Receiver Operation           |       |      |      |      |       |
| I <sub>VCC</sub>   | Power Consumption            |       |      | 17   |      | mA    |
| RX <sub>SENS</sub> | RX Sensitivity @0.1%BER      |       |      | -88  |      | dBm   |

## 9 SPI Interface

#### 9.1 SPI Data and Control


The chip provides a simple interface for application MCU, consisting of SPI interface plus two handshake signals. The chip SPI supports slave mode only.



The data and control interface gives access to all the features in the chip. The data and control interface consists of the following seven digital signals:

| Pin  | Description             |
|------|-------------------------|
| RSTB | Reset Input, active low |
| MODE | Mode Selection: 0—SPI   |
| SCSB | SPI Slave Select Input  |
|      | Wakeup from SLEEP state |
| SCK  | SPI Clock Input         |
| SDI  | SPI Data Input          |
| SDO  | SPI Data Output         |
| PKT  | Packet TX/RX Flag       |

### 9.2 SPI Command Format

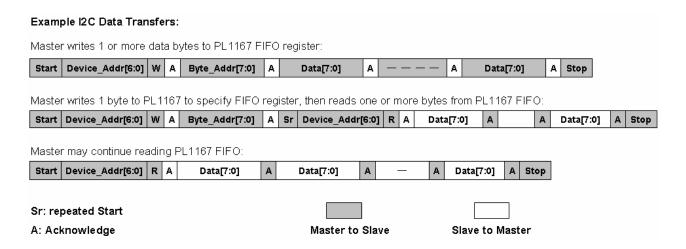


| Name               | Min.   | Тур. | Max. | Description                                       |
|--------------------|--------|------|------|---------------------------------------------------|
| T <sub>SSH</sub>   | 250ns  |      |      | Interval between two SPI accesses                 |
| $T_{SSF},T_{SSR}$  | 41.5ns |      |      | Relationship between SCSB and SCK                 |
| $T_{\mathtt{A2D}}$ | *1     |      |      | Interval time between address and data            |
| T <sub>H2L</sub>   | *1     |      |      | Interval time between high byte and low byte data |
| $T_{\mathtt{R2R}}$ | *1     |      |      | Interval time between two register data           |
| Tsck               | 83ns   |      |      | SCK period                                        |

**Notes**: \*1--When reading FIFO data, at least 450ns wait time is required. Otherwise,  $T3_{min} = 41.5$ ns.

## 10 I2C Interface

### 10.1 I2C Data and Control


| Pin  | Description             |
|------|-------------------------|
| RSTB | Reset Input, active low |
| MODE | Mode Selection: 1—I2C   |
| SCSB | Wakeup from SLEEP state |
| SCL  | I2C Clock Input         |
| SDA  | I2C Data I/O            |
| A4   | I2C Address Bit 4       |

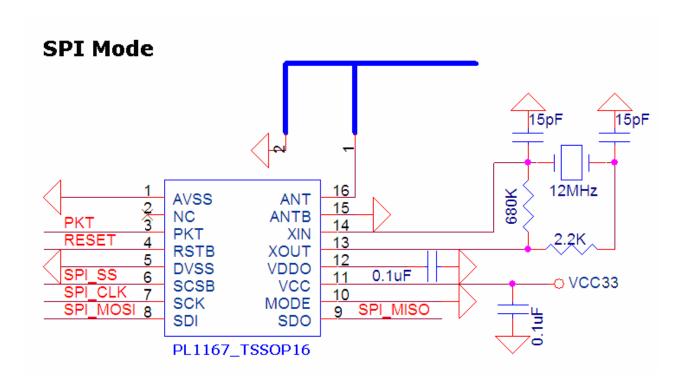
## **10.2 I2C Supported Feature**

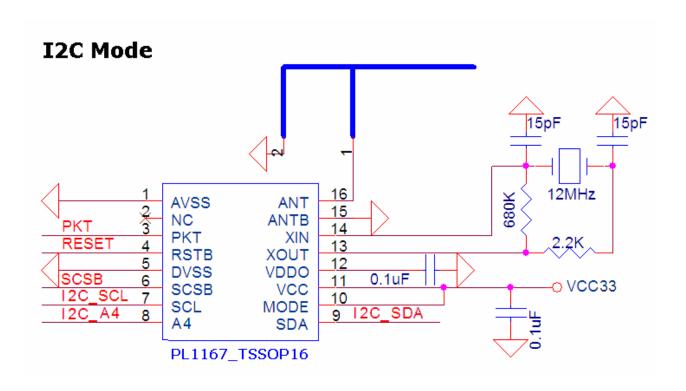
| I2C Slave Mode Optional  | Support or Not |
|--------------------------|----------------|
| Standard-mode – 100 kbps | Yes            |
| Fast-mode – 400 kbps     | Yes            |

| I2C Slave Mode Optional     | Support or Not |
|-----------------------------|----------------|
| Fast-mode Plus – 1000 kbps  | Yes            |
| High-speed mode – 3200 kbps | No             |
| Clock Stretching            | No             |
| 10-bit slave address        | No             |
| general call address        | No             |
| software reset              | No             |
| device ID                   | No             |

#### 10.3 I2C Command Format



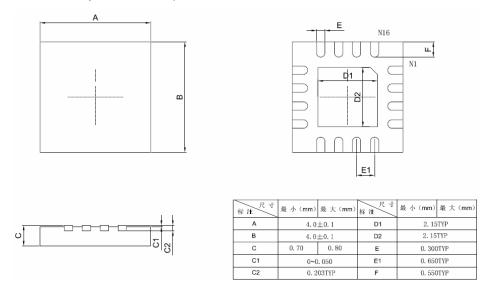

### 10.4 I2C Device Address


| A6 | A5 | <b>A4</b> | А3 | A2 | <b>A</b> 1 | Α0 | R/W     |
|----|----|-----------|----|----|------------|----|---------|
| 0  | 1  | A4 Pin    | 1  | 0  | 0          | 0  | Read=1  |
|    |    |           |    |    |            |    | Write=0 |

# 11 Control Register Information

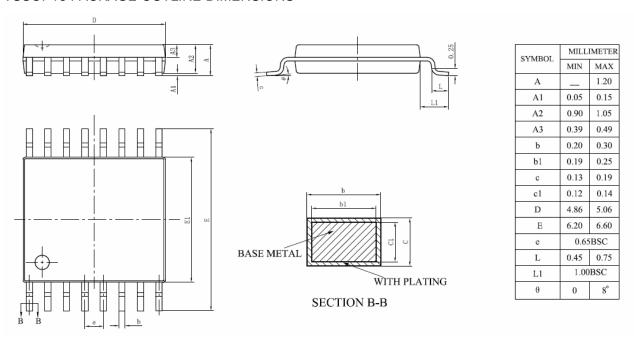
The latest recommended control registers value is in user manual, please contact with POWERLINK.

## 12 Typical Application






# **13 Packaging Information**


## QFN16 package

QFN16(4x4mm, 0.65mm pitch, Thinner) PACKAGE OUTLINE DIMENSIONS



### TSSOP16 package

TSSOP16 PACKAGE OUTLINE DIMENSIONS



# **14 Important Notice**

POWERLINK reserves the right to make changes or corrections to its products at any time without notice. Customers should verify the datasheets are current and complete before placing order.