-
Notifications
You must be signed in to change notification settings - Fork 2
/
optimizer.py
81 lines (68 loc) · 2.79 KB
/
optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# --------------------------------------------------------
# Swin Transformer
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ze Liu
# --------------------------------------------------------
import torch.nn as nn
from torch import optim as optim
def build_optimizer(config, model):
"""
Build optimizer, set weight decay of normalization to 0 by default.
"""
skip = {}
skip_keywords = {}
if hasattr(model, 'no_weight_decay'):
skip = model.no_weight_decay()
if hasattr(model, 'no_weight_decay_keywords'):
skip_keywords = model.no_weight_decay_keywords()
parameters = set_weight_decay(model, skip, skip_keywords,
lr=config.TRAIN.BASE_LR)
opt_lower = config.TRAIN.OPTIMIZER.NAME.lower()
optimizer = None
if opt_lower == 'sgd':
optimizer = optim.SGD(parameters, momentum=config.TRAIN.OPTIMIZER.MOMENTUM, nesterov=True,
lr=config.TRAIN.BASE_LR, weight_decay=config.TRAIN.WEIGHT_DECAY)
elif opt_lower == 'adamw':
optimizer = optim.AdamW(parameters, eps=config.TRAIN.OPTIMIZER.EPS, betas=config.TRAIN.OPTIMIZER.BETAS,
lr=config.TRAIN.BASE_LR, weight_decay=config.TRAIN.WEIGHT_DECAY)
return optimizer
def set_weight_decay(model, skip_list=(), skip_keywords=(), lr=None):
assert lr
has_decay = []
no_decay = []
skip_keywords_prefix = []
for name, module in model.named_modules():
if isinstance(module, nn.LayerNorm):
skip_keywords_prefix.append(name)
continue
if hasattr(module, 'no_weight_decay'):
nwd_dict = module.no_weight_decay()
for post_fix in nwd_dict:
if name == '':
whole_name = post_fix
else:
whole_name = name + '.' + post_fix
skip_keywords_prefix.append(whole_name)
for name, param in model.named_parameters():
if not param.requires_grad:
continue # frozen weights
if len(param.shape) == 1 or name.endswith(".bias") or (name in skip_list) or \
check_keywords_in_name(name, skip_keywords) or check_keywords_match_name_prefix(name, skip_keywords_prefix):
no_decay.append(param)
else:
has_decay.append(param)
return [{'params': has_decay},
{'params': no_decay, 'weight_decay': 0.}]
def check_keywords_in_name(name, keywords=()):
isin = False
for keyword in keywords:
if keyword in name:
isin = True
return isin
def check_keywords_match_name_prefix(name: str, keywords=()):
isin = False
for keyword in keywords:
if name.startswith(keyword):
isin = True
return isin