-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSubset Sum Problem2
58 lines (43 loc) · 1.45 KB
/
Subset Sum Problem2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
set[]={3, 4, 5, 2}
target=6
0 1 2 3 4 5 6
0 T F F F F F F
3 T F F T F F F
4 T F F T T F F
5 T F F T T T F
2 T F T T T T T
bool isSubsetSum(int set[], int n, int sum)
{
// The value of subset[i][j] will be true if
// there is a subset of set[0..j-1] with sum
// equal to i
bool subset[n + 1][sum + 1];
// If sum is 0, then answer is true
for (int i = 0; i <= n; i++)
subset[i][0] = true;
// If sum is not 0 and set is empty,
// then answer is false
for (int i = 1; i <= sum; i++)
subset[0][i] = false;
// Fill the subset table in botton up manner
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= sum; j++) {
if (j < set[i - 1])
subset[i][j] = subset[i - 1][j];
if (j >= set[i - 1])
subset[i][j] = subset[i - 1][j]
|| subset[i - 1][j - set[i - 1]];
}
}
/* // uncomment this code to print table
for (int i = 0; i <= n; i++)
{
for (int j = 0; j <= sum; j++)
printf ("%4d", subset[i][j]);
printf("\n");
}*/
return subset[n][sum];
}
Complexity Analysis:
Time Complexity: O(sum*n), where sum is the ‘target sum’ and ‘n’ is the size of array.
Auxiliary Space: O(sum*n), as the size of 2-D array is sum*n.