-
Notifications
You must be signed in to change notification settings - Fork 1
/
Print shortest common supersequence II
110 lines (91 loc) · 2.82 KB
/
Print shortest common supersequence II
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
Let X[0..m-1] and Y[0..n-1] be two strings and m and be respective
lengths.
if (m == 0) return n;
if (n == 0) return m;
// If last characters are same, then add 1 to result and
// recur for X[]
if (X[m-1] == Y[n-1])
return 1 + SCS(X, Y, m-1, n-1);
// Else find shortest of following two
// a) Remove last character from X and recur
// b) Remove last character from Y and recur
else return 1 + min( SCS(X, Y, m-1, n), SCS(X, Y, m, n-1) );
Length of LCS = a.length+b.length+length of LCS
otherwise:
string printShortestSuperSeq(string X, string Y)
{
int m = X.length();
int n = Y.length();
// dp[i][j] contains length of shortest supersequence
// for X[0..i-1] and Y[0..j-1]
int dp[m + 1][n + 1];
// Fill table in bottom up manner
for (int i = 0; i <= m; i++)
{
for (int j = 0; j <= n; j++)
{
// Below steps follow recurrence relation
if(i == 0)
dp[i][j] = j;
else if(j == 0)
dp[i][j] = i;
else if(X[i - 1] == Y[j - 1])
dp[i][j] = 1 + dp[i - 1][j - 1];
else
dp[i][j] = 1 + min(dp[i - 1][j], dp[i][j - 1]);
}
}
// Following code is used to print shortest supersequence
// dp[m][n] stores the length of the shortest supersequence
// of X and Y
int index = dp[m][n];
// string to store the shortest supersequence
string str;
// Start from the bottom right corner and one by one
// push characters in output string
int i = m, j = n;
while (i > 0 && j > 0)
{
// If current character in X and Y are same, then
// current character is part of shortest supersequence
if (X[i - 1] == Y[j - 1])
{
// Put current character in result
str.push_back(X[i - 1]);
// reduce values of i, j and index
i--, j--, index--;
}
// If current character in X and Y are different
else if (dp[i - 1][j] > dp[i][j - 1])
{
// Put current character of Y in result
str.push_back(Y[j - 1]);
// reduce values of j and index
j--, index--;
}
else
{
// Put current character of X in result
str.push_back(X[i - 1]);
// reduce values of i and index
i--, index--;
}
}
// If Y reaches its end, put remaining characters
// of X in the result string
while (i > 0)
{
str.push_back(X[i - 1]);
i--, index--;
}
// If X reaches its end, put remaining characters
// of Y in the result string
while (j > 0)
{
str.push_back(Y[j - 1]);
j--, index--;
}
// reverse the string and return it
reverse(str.begin(), str.end());
return str;
}