-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathGAN.py
254 lines (189 loc) · 7.05 KB
/
GAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
#!/usr/bin/env python
# coding: utf-8
import torch
from torch import nn, optim
from torch.autograd import Variable
import numpy as np
from numpy.random import randn
from IPython.display import clear_output
matplotlib_is_available = True
try:
from matplotlib import pyplot as plt
except ImportError:
print("Will skip plotting; matplotlib is not available.")
matplotlib_is_available = False
use_cuda = torch.cuda.is_available()
device = torch.device('cuda' if use_cuda else 'cpu')
print("Using %s for computation" % device)
resources = "resources/"
models = "models/"
# Define the function that produces the real data
def real_fn(x):
return x*x + 3*x + 2
def get_real_samples(n=5000, scale=50):
data = []
x = scale * randn(n)
for i in range(n):
y = real_fn(x[i])
data.append([x[i], y])
return torch.FloatTensor(data)
# Noise that is given as input to the generator
def noise_data(n=5000, elements=5):
return torch.randn(size=[n, elements])
class Generator(nn.Module):
def __init__(self, input_len=5, hidden_len=16, output_len=2):
super(Generator, self).__init__()
self.layer1 = nn.Sequential(
nn.Linear(input_len, hidden_len),
nn.ReLU()
)
self.layer2 = nn.Sequential(
nn.Linear(hidden_len, hidden_len),
nn.ReLU()
)
self.layer3 = nn.Sequential(
nn.Linear(hidden_len, output_len)
)
def forward(self, x):
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
return x
generator = Generator()
class Discriminator(nn.Module):
def __init__(self, input_len=2, hidden_len=16, output_len=1):
super(Discriminator, self).__init__()
self.layer1 = nn.Sequential(
nn.Linear(input_len, hidden_len),
nn.LeakyReLU(0.2),
nn.Dropout(0.3)
)
self.layer2 = nn.Sequential(
nn.Linear(hidden_len, hidden_len),
nn.LeakyReLU(0.2),
nn.Dropout(0.3)
)
self.layer3 = nn.Sequential(
nn.Linear(hidden_len, output_len),
nn.Sigmoid()
)
def forward(self, x):
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
return x
discriminator = Discriminator()
d_lr = 1e-3
g_lr = 1e-3
d_optimizer = optim.Adam(discriminator.parameters(), lr=d_lr)
g_optimizer = optim.Adam(generator.parameters(), lr=g_lr)
loss = nn.BCELoss()
# Load the pre trained weights
# generator.load_state_dict(torch.load(models+'generator.pth'))
# discriminator.load_state_dict(torch.load(models+'discriminator.pth'))
# g_optimizer.load_state_dict(torch.load(models+'g_optimizer.pth'))
# d_optimizer.load_state_dict(torch.load(models+'d_optimizer.pth'))
dtype = torch.cuda.FloatTensor
def ones_target(size):
# Instead of having 1 as the target, one-sided label smoothing replaces the target witth 0.9
# data = Variable(torch.ones(size, 1).type(dtype))
data = Variable(torch.Tensor(size, 1).fill_(0.9).type(dtype))
return data
def zeros_target(size):
data = Variable(torch.zeros(size, 1).type(dtype))
return data
def train_discriminator(optimizer, real_data, generated_data):
N = real_data.size(0)
optimizer.zero_grad()
# Train the discriminator on the real data
prediction_real = discriminator(real_data)
error_real = loss(prediction_real, ones_target(N))
error_real.backward()
# Now train it on the generated data
prediction_generated = discriminator(generated_data)
error_generated = loss(prediction_generated, zeros_target(N))
error_generated.backward()
optimizer.step()
return error_real + error_generated, prediction_real, prediction_generated
def train_generator(optimizer, generated_data):
N = generated_data.size(0)
optimizer.zero_grad()
# Run the generated data through the discriminator
prediction = discriminator(generated_data)
# Train the generator with the flipped targets, i.e. the target is 0.9
error = loss(prediction, ones_target(N))
error.backward()
optimizer.step()
return error
num_test_samples = 256
discriminator_steps = 20
generator_steps = 20
num_epochs = 5000
printing_epoch = 100
# Move the model to the GPU if available
discriminator.to(device)
generator.to(device)
d_losses = []
g_losses = []
def current_status(real, generated, epoch):
x, y = zip(*generated.tolist())
plt.scatter(x, y, label='Generated Data')
x, y = zip(*real.tolist())
plt.scatter(x, y, label='Real Data')
plt.legend(loc='upper right')
plt.xlabel("input")
plt.title("Comparsion of Real vs Generated Data - Epoch %s" %epoch)
n=str(epoch).zfill(4)
save_location = resources+ 'outputs/epoch-%s.png' %n
plt.savefig(save_location, bbox_inches='tight')
plt.show()
def plot_losses(disc, gene):
plt.plot(disc, label='Discriminator Loss')
plt.plot(gene, label='Generator Loss')
plt.legend(loc='upper right')
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.title("Discriminator and Generator Loss")
save_location = resources+ 'loss.png'
plt.savefig(save_location, bbox_inches='tight')
plt.show()
# Set the models to training mode
discriminator.train()
generator.train()
for epoch in range(num_epochs):
real_data = None
generated_data = None
for d_steps in range(discriminator_steps):
real_data = get_real_samples(n=num_test_samples)
generator_input = noise_data(n=num_test_samples)
generator_input = generator_input.to(device)
# Dont calculate gradients for this
generated_data = generator(generator_input).detach()
generated_data = generated_data.to(device)
real_data = real_data.to(device)
d_error, d_pred_real, d_pred_generated = train_discriminator(
d_optimizer, real_data, generated_data)
d_losses.append(d_error.item())
for g_steps in range(generator_steps):
generator_input = noise_data(n=num_test_samples)
generator_input = generator_input.to(device)
generated_data = generator(generator_input)
g_error = train_generator(g_optimizer, generated_data)
g_losses.append(g_error.item())
if(epoch % printing_epoch == 0):
clear_output()
print("Epoch")
print(epoch)
print("Discriminator Loss:")
print(d_error.item())
print("Generator Loss:")
print(g_error.item())
current_status(real_data, generated_data, epoch)
# Save the models to disk to be loaded later if neccesary
torch.save(generator.state_dict(), models+'generator.pth')
torch.save(discriminator.state_dict(), models+'discriminator.pth')
torch.save(g_optimizer.state_dict(), models+'g_optimizer.pth')
torch.save(d_optimizer.state_dict(), models+'d_optimizer.pth')
plot_losses(d_losses, g_losses)
# To produce a gif from the output images saved to disk. You have to install imagemagick
get_ipython().system(' convert -resize 80% -delay 10 -loop 0 resources/outputs/*.png resources/outputs/output.gif')