-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
184 lines (151 loc) · 5.11 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import os
import random
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import torch
import torchvision
from tqdm.auto import tqdm
save_dir = "./results"
class TrackLosses(object):
def __init__(self, name):
self.reset()
self.name = name
def update(self, x):
self.last_value = x
self.values.append(x.item())
@property
def average(self):
if len(self.values) > 0:
return np.mean(self.values)
else:
return 0.0
def reset(self):
self.last_value = 0
self.values = []
def plot(self):
plt.scatter(np.arange(0, len(self.values)), self.values, s=1, label=self.name)
plt.title(label=self.name)
plt.legend()
def show_images(
images,
save=False,
fname=None,
path=save_dir,
nrow=4,
title=None,
):
images = images.detach().cpu()
images = torchvision.utils.make_grid(images, nrow=nrow)
show_image(images, save, fname, path, title)
def show_image(
img,
save=False,
fname=None,
path=save_dir,
title=None,
):
plt.imshow(img.permute(1, 2, 0), interpolation="bicubic")
if title is not None:
plt.title(title, loc="right")
plt.xticks([])
plt.yticks([])
fig = plt.gcf()
fig.set_size_inches(15, 9.5)
if save:
save_location = os.path.join(path, fname)
fig.savefig(save_location, bbox_inches="tight")
plt.show()
device = "cuda"
def evaluate(
model,
loader,
num_images=4,
save=False,
fname=None,
path=save_dir,
):
with torch.no_grad():
model.eval()
x, y, _ = next(iter(loader))
x = x.to(device)
y = y.to(device)
fake_y = model.generate(x)
result = torch.cat((x[:num_images], fake_y[-1][:num_images], y[:num_images]))
psnr, ssim_val = model.return_metrics(fake_y[-1], y)
metric = "SSIM: %.4f PSNR: %.4f dB" % (ssim_val, psnr)
show_images(result, save, fname, path, title=metric)
print("SSIM: ", ssim_val)
print("PSNR: ", psnr)
def plot_metrics(df):
f = plt.figure(figsize=(10, 10))
ax = f.add_subplot(221)
ax2 = f.add_subplot(222)
ax.boxplot(df["PSNR"].values, vert=False)
ax.set_title("PSNR")
ax2.boxplot(df["SSIM"].values, vert=False)
ax2.set_title("SSIM")
ax3 = f.add_subplot(223)
ax4 = f.add_subplot(224)
ax3.hist(df["PSNR"].values, bins=100)
ax3.set_title("")
ax4.hist(df["SSIM"].values, bins=100)
ax4.set_title("")
plt.tight_layout()
plt.show()
def compare_metrics(df):
f = plt.figure(figsize=(10, 5))
ax3 = f.add_subplot(121)
ax4 = f.add_subplot(122)
ax3.hist(df["Dataset PSNR"].values, bins=100, label="Dataset")
ax3.hist(df["Model PSNR"].values, bins=100, label="Model", alpha=0.9)
ax3.legend()
ax4.hist(df["Dataset SSIM"].values, bins=100, label="Dataset")
ax4.hist(df["Model SSIM"].values, bins=100, label="Model", alpha=0.9)
ax4.legend()
plt.tight_layout()
plt.show()
def print_stats(name, model_loss, data_loss):
print(name)
print("Best- Model: %.4f Dataset: %.4f " % (max(model_loss.values), max(data_loss.values)))
print("Average- Model: %.4f Dataset: %.4f " % (model_loss.average, data_loss.average))
print("Worst- Model: %.4f Dataset: %.4f " % (min(model_loss.values), min(data_loss.values)))
def validate(model, loader, name=None, save_metric_dir=None):
with torch.no_grad():
model.eval()
data_psnr_loss = TrackLosses("PSNR")
data_ssim_loss = TrackLosses("SSIM")
model_psnr_loss = TrackLosses("PSNR")
model_ssim_loss = TrackLosses("SSIM")
for x, y, _ in tqdm(loader, total=len(loader)):
x = x.to(device)
y = y.to(device)
fake_y = model.generate(x)
psnr, ssim_val = model.return_metrics(fake_y[-1], y)
model_psnr_loss.update(psnr)
model_ssim_loss.update(ssim_val)
psnr, ssim_val = model.return_metrics(x, y)
data_psnr_loss.update(psnr)
data_ssim_loss.update(ssim_val)
print_stats("PSNR", model_psnr_loss, data_psnr_loss)
print_stats("SSIM", model_ssim_loss, data_ssim_loss)
print("\n")
zippedList = list(zip(model_psnr_loss.values, model_ssim_loss.values))
model_df = pd.DataFrame(zippedList, columns=["PSNR", "SSIM"])
zippedList = list(zip(data_psnr_loss.values, data_ssim_loss.values))
data_df = pd.DataFrame(zippedList, columns=["PSNR", "SSIM"])
df = pd.concat([model_df, data_df], axis=1)
df.columns = ["Model PSNR", "Model SSIM", "Dataset PSNR", "Dataset SSIM"]
compare_metrics(df)
print(df.describe())
if save_metric_dir and name:
save_path = os.path.join(save_metric_dir, f"{name}.csv")
df.to_csv(save_path)
def set_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.
np.random.seed(seed) # Numpy module.
random.seed(seed) # Python random module.
torch.manual_seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)