-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasets.py
385 lines (319 loc) · 12.6 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import glob
import os
import albumentations as A
import kaggle
import numpy as np
import PIL
import pytorch_lightning as pl
import torch
from albumentations.pytorch import ToTensorV2
from torch.utils.data import random_split
from torch.utils.data.dataloader import DataLoader
from utils import show_images
def get_train_transforms(input_size=256):
return A.Compose(
[
A.RandomCrop(input_size, input_size),
A.HorizontalFlip(),
A.VerticalFlip(),
A.OneOf(
[
A.HueSaturationValue(
hue_shift_limit=0.2,
sat_shift_limit=0.2,
val_shift_limit=0.2,
p=0.9,
),
A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.15, p=0.9),
],
p=0.9,
),
A.ToFloat(255),
ToTensorV2(),
],
additional_targets={"image1": "image"},
)
def get_valid_transforms(input_size=256):
return A.Compose(
[A.CenterCrop(input_size, input_size), A.ToFloat(255), ToTensorV2()],
additional_targets={"image1": "image"},
)
train_transform = get_train_transforms()
valid_transform = get_valid_transforms()
BATCH_SIZE = 4
SEED = 42
NUM_WORKERS = 4
kaggle.api.authenticate()
class BaseDataModule(pl.LightningDataModule):
def __init__(self, batch_size=BATCH_SIZE, seed=SEED, num_workers=NUM_WORKERS, on_gpu=True):
super().__init__()
self.batch_size = batch_size
self.seed = seed
self.num_workers = num_workers
self.on_gpu = on_gpu
def show_sample(self, split="train"):
assert split in ["train", "val", "test"], f"Invalid {split}"
if hasattr(self, f"{split}_data"):
loader = getattr(self, f"{split}_loader")()
print(f"No. of batches in {split}: ", len(loader))
x, y, z = next(iter(loader))
show_images(torch.cat((x, y, z)))
else:
print(f"Split {split} not found")
def train_dataloader(self):
return DataLoader(
self.train_data,
shuffle=True,
batch_size=self.batch_size,
num_workers=self.num_workers,
pin_memory=self.on_gpu,
)
def val_dataloader(self):
return DataLoader(
self.val_data,
shuffle=False,
batch_size=self.batch_size,
num_workers=self.num_workers,
pin_memory=self.on_gpu,
)
def test_dataloader(self):
return DataLoader(
self.test_data,
shuffle=False,
batch_size=self.batch_size,
num_workers=self.num_workers,
pin_memory=self.on_gpu,
)
def split_dataset(data, frac, seed):
assert isinstance(frac, float) and frac <= 1.0 and frac >= 0.0, f"Invalid fraction {frac}"
train_split = int(len(data) * frac)
val_split = len(data) - train_split
return random_split(data, [train_split, val_split], generator=torch.Generator().manual_seed(seed))
class JRDR(torch.utils.data.Dataset):
def __init__(self, root, type="Light", split="train", transform=train_transform):
self.root = root
self.data_dir = os.path.join(self.root, "rain_data_" + split + "_" + type)
if type == "Heavy" or split == "test":
self.rain_dir = os.path.join(self.data_dir, "rain/X2")
else:
self.rain_dir = os.path.join(self.data_dir, "rain")
self.norain_dir = os.path.join(self.data_dir, "norain")
self.files = glob.glob(self.rain_dir + "/*.*")
if len(self.files) == 0:
raise RuntimeError("Dataset not found.")
self.transform = transform
def get_file_name(self, idx):
img1 = self.files[idx]
_, img2 = os.path.split(img1)
img2 = img2.split("x2")[0] + ".png"
img2 = os.path.join(self.norain_dir, img2)
return img1, img2
def __getitem__(self, idx):
img1, img2 = self.get_file_name(idx)
rain_img = PIL.Image.open(img1)
norain_img = PIL.Image.open(img2)
if self.transform is not None:
rain_img, norain_img = np.array(rain_img), np.array(norain_img)
aug = self.transform(image=rain_img, image1=norain_img)
rain_img, norain_img = aug["image"], aug["image1"]
return rain_img, norain_img, rain_img - norain_img
def __len__(self):
return len(glob.glob(self.norain_dir + "/*.*"))
class JRDRDataModule(BaseDataModule):
"""
JRDR DataModule for PyTorch-Lightning
Learn more at https://pytorch-lightning.readthedocs.io/en/stable/extensions/datamodules.html
"""
def __init__(
self,
data_dir="data/",
dataset_type="Light",
train_transform=train_transform,
valid_transform=valid_transform,
batch_size=BATCH_SIZE,
seed=SEED,
num_workers=NUM_WORKERS,
on_gpu=True,
):
super().__init__(batch_size=batch_size, seed=seed, num_workers=num_workers, on_gpu=on_gpu)
self.data_dir = data_dir
self.train_transform = train_transform
self.valid_transform = valid_transform
self.type = dataset_type
def prepare_data(self):
dataset_dir = os.path.join(self.data_dir, "JRDR")
if not os.path.exists(dataset_dir):
kaggle.api.dataset_download_files("shivakanthsujit/jrdr-deraining-dataset", path=self.data_dir, unzip=True)
def setup(self, stage):
dataset_dir = os.path.join(self.data_dir, "JRDR")
data = JRDR(root=dataset_dir, type=self.type, split="train", transform=self.train_transform)
self.train_data, self.val_data = split_dataset(data, 0.8, self.seed)
self.test_data = JRDR(root=dataset_dir, type=self.type, split="test", transform=self.valid_transform)
class li_cvpr(torch.utils.data.Dataset):
def __init__(self, root, transform=valid_transform):
self.root = root
self.rain_files = sorted(glob.glob(self.root + "/*in.png"))
self.norain_files = sorted(glob.glob(self.root + "/*GT.png"))
if len(self.rain_files) == 0 or len(self.norain_files) == 0:
raise RuntimeError("Dataset not found.")
self.transform = transform
def get_file_name(self, idx):
img1 = self.rain_files[idx]
img2 = self.norain_files[idx]
return img1, img2
def __getitem__(self, idx):
img1, img2 = self.get_file_name(idx)
rain_img = PIL.Image.open(img1)
norain_img = PIL.Image.open(img2)
if self.transform is not None:
rain_img, norain_img = np.array(rain_img), np.array(norain_img)
aug = self.transform(image=rain_img, image1=norain_img)
rain_img, norain_img = aug["image"], aug["image1"]
return rain_img, norain_img, rain_img - norain_img
def __len__(self):
return len(self.rain_files)
class Rain12DataModule(BaseDataModule):
"""
Rain12 DataModule for PyTorch-Lightning
Learn more at https://pytorch-lightning.readthedocs.io/en/stable/extensions/datamodules.html
"""
def __init__(
self,
data_dir="data/",
train_transform=train_transform,
valid_transform=valid_transform,
batch_size=BATCH_SIZE,
seed=SEED,
num_workers=NUM_WORKERS,
on_gpu=True,
):
super().__init__(batch_size=batch_size, seed=seed, num_workers=num_workers, on_gpu=on_gpu)
self.data_dir = data_dir
self.train_transform = train_transform
self.valid_transform = valid_transform
def prepare_data(self):
kaggle.api.dataset_download_files("shivakanthsujit/li-cvpr-dataset", path=self.data_dir, unzip=True)
def setup(self, stage):
dataset_dir = os.path.join(self.data_dir, "Rain12")
if stage == "fit" or stage is None:
data = li_cvpr(root=dataset_dir, transform=self.train_transform)
self.train_data, self.val_data = split_dataset(data, 0.8, self.seed)
if stage == "test" or stage is None:
self.test_data = li_cvpr(root=dataset_dir, transform=self.valid_transform)
class IDGAN(torch.utils.data.Dataset):
def __init__(self, root, split="train", syn=True, transform=train_transform):
self.root = root
self.data_dir = os.path.join(self.root, "rain")
if split == "test":
self.rain_dir = os.path.join(self.data_dir, "test_syn")
else:
self.rain_dir = os.path.join(self.data_dir, "training")
self.norain_dir = self.rain_dir
self.files = glob.glob(self.rain_dir + "/*.*")
if len(self.files) == 0:
raise RuntimeError("Dataset not found.")
self.transform = transform
def get_file_name(self, idx):
img1 = self.files[idx]
_, img2 = os.path.split(img1)
img2 = img2.split("x2")[0] + ".png"
img2 = os.path.join(self.norain_dir, img2)
return img1, img2
def __getitem__(self, idx):
img1 = self.files[idx]
im = PIL.Image.open(img1)
w, h = im.size
norain_img = im.crop((0, 0, w // 2, h))
norain_img = np.array(norain_img)
rain_img = im.crop((w // 2, 0, w, h))
rain_img = np.array(rain_img)
if self.transform is not None:
rain_img, norain_img = np.array(rain_img), np.array(norain_img)
aug = self.transform(image=rain_img, image1=norain_img)
rain_img, norain_img = aug["image"], aug["image1"]
return rain_img, norain_img, rain_img - norain_img
def __len__(self):
return len(glob.glob(self.norain_dir + "/*.*"))
class IDCGANDataModule(BaseDataModule):
"""
IDCGAN DataModule for PyTorch-Lightning
Learn more at https://pytorch-lightning.readthedocs.io/en/stable/extensions/datamodules.html
"""
def __init__(
self,
data_dir="data/",
syn=True,
train_transform=train_transform,
valid_transform=valid_transform,
batch_size=BATCH_SIZE,
seed=SEED,
num_workers=NUM_WORKERS,
on_gpu=True,
):
super().__init__(batch_size=batch_size, seed=seed, num_workers=num_workers, on_gpu=on_gpu)
self.data_dir = data_dir
self.train_transform = train_transform
self.valid_transform = valid_transform
self.syn = syn
def prepare_data(self):
kaggle.api.dataset_download_files("shivakanthsujit/idgan-dataset", path=self.data_dir, unzip=True)
def setup(self, stage):
dataset_dir = os.path.join(self.data_dir, "IDGAN")
if stage == "fit" or stage is None:
data = IDGAN(root=dataset_dir, syn=self.syn, transform=self.train_transform)
self.train_data, self.val_data = split_dataset(data, 0.8, self.seed)
if stage == "test" or stage is None:
self.test_data = IDGAN(root=dataset_dir, syn=self.syn, split="test", transform=self.valid_transform)
def get_train_valid_loader(
train_data,
valid_data,
batch_size=4,
valid_size=0.1,
show_sample=False,
num_workers=NUM_WORKERS,
pin_memory=False,
shuffle=True,
seed=SEED,
):
error_msg = "[!] valid_size should be in the range [0, 1]."
assert (valid_size >= 0) and (valid_size <= 1), error_msg
num_train = len(train_data)
indices = list(range(num_train))
split = int(np.floor(valid_size * num_train))
if shuffle:
np.random.seed(seed)
np.random.shuffle(indices)
train_idx, valid_idx = indices[split:], indices[:split]
train_dataset = torch.utils.data.Subset(train_data, train_idx)
valid_dataset = torch.utils.data.Subset(valid_data, valid_idx)
train_loader = DataLoader(
train_dataset,
batch_size=batch_size,
num_workers=num_workers,
pin_memory=pin_memory,
)
valid_loader = DataLoader(
valid_dataset,
batch_size=batch_size,
num_workers=num_workers,
pin_memory=pin_memory,
)
print("Training Batches: ", len(train_loader))
print("Validation Batches: ", len(valid_loader))
# visualize some images
if show_sample:
x, y, z = next(iter(train_loader))
show_images(torch.cat((x, y, z)))
x, y, z = next(iter(valid_loader))
show_images(torch.cat((x, y, z)))
return train_loader, valid_loader
def get_test_loader(test_data, batch_size=1, shuffle=False, num_workers=NUM_WORKERS, pin_memory=False):
test_loader = DataLoader(
test_data,
batch_size=batch_size,
num_workers=num_workers,
shuffle=shuffle,
pin_memory=pin_memory,
)
print("Testing Batches: ", len(test_loader))
return test_loader