Skip to content

Latest commit

 

History

History

universenet

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UniverseNet

Introduction

UniverseNets are state-of-the-art detectors for universal-scale object detection. Please refer to our paper for details. https://arxiv.org/abs/2103.14027

@inproceedings{USB_shinya_BMVC2022,
  title={{USB}: Universal-Scale Object Detection Benchmark},
  author={Shinya, Yosuke},
  booktitle={British Machine Vision Conference (BMVC)},
  year={2022}
}

Example for fine-tuning

For fine-tuning from a COCO pre-trained model, please see this example.

Results and Models

Main results

Method Backbone Lr schd Mem (GB) Inf time (fps) box AP Download
ATSS+SEPC R-50 1x - 25.0 42.1 model
UniverseNet R2-50 1x 5.1 17.3 46.7 model
UniverseNet R2-50 2x 5.1 17.3 48.9 model
UniverseNet+GFL R2-50 1x 5.3 17.6 47.5 model
UniverseNet+GFL R2-50 2x 5.3 17.6 49.4 model
UniverseNet+GFL R2-101 2x 8.5 11.9 50.8 model
UniverseNet 20.08d R2-50 1x 5.8 17.3 48.6 model
UniverseNet 20.08d R2-101 20e 9.1 11.7 50.9 model
UniverseNet 20.08d R2-101 2x 9.1 11.7 50.6 model
UniverseNet 20.08 R2-50 1x 5.5 24.9 47.5 model
UniverseNet 20.08 R2-50 2x 5.5 24.9 48.5 model
  • In addition to ATSS+SEPC, UniverseNet uses Res2Net-v1b-50, DCN, and multi-scale training (480-960).
  • The settings for normalization layers (including whether to use iBN of SEPC) depend on the config files.
  • All models except for ATSS+SEPC were trained and evaluated using fp16 (mixed precision).
  • The above UniverseNet (2x) model is a checkpoint at epoch 23. The AP of a checkpoint at epoch 24 is quite similar (48.9) but slightly worse.

Faster models

Method Backbone Test scale Lr schd Mem (GB) Inf time (fps) box AP Download
UniverseNet 20.08s R-50-C (1333, 800) 2x 4.7 31.6 46.9 model
UniverseNet 20.08s R-50-C (512, 512) 2x 5.7 36.0 41.8 model
UniverseNet 20.08s R-50-C (224, 224) 2x 1.6 - 29.4 model
  • 4 GPUs x 16 samples_per_gpu for small test scales ((512, 512) and (224, 224)). You will be able to use BatchNorm with norm_eval=False even on 1 GPU.

Test scale and test-dev AP

Method Backbone Max test scale TTA Inf time (fps) box AP (val) box AP (test-dev)
UniverseNet R2-50 (1333, 800) - 15.8 48.9 49.2
UniverseNet R2-50 (1600, 960) - 14.5 49.2 49.5
UniverseNet 20.08s R-50-C (1333, 800) - 31.6 46.9 47.4
UniverseNet 20.08 R2-50 (1333, 800) - 24.9 48.5 48.8
UniverseNet 20.08d R2-101 (1333, 800) - 11.7 50.9 51.3
UniverseNet 20.08d R2-101 (2000, 1200) 5 - 53.1 53.8
UniverseNet 20.08d R2-101 (3000, 1800) 13 - 53.5 54.1
  • TTA: test-time augmentation including horizontal flip and multi-scale testing (numbers denote scales).

Misc.

Other hyperparameters and details for reproduction
Method warmup_iters lcconv_padding GPUs x samples_per_gpu box AP
UniverseNet 500 0 4x4 -> 8x2 48.9
UniverseNet 1000 1 4x4 48.9
UniverseNet 3665 0 4x4 48.8
  • The checkpoints in release 20.06 were trained with a warmup_iters of 500. To make training more stable, the current config sets warmup_iters to 1000. The difference will not affect the final accuracy so much.
  • In the official SEPC implementation, padding values in lconv and cconv (we call lcconv_padding) are set to 0. Setting lcconv_padding to 1 doesn't affect accuracy.
  • To accelerate training for CVPR competitions, we used 8 GPUs for 9-24 epochs, after using 4 GPUs for 1-8 epochs.