-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreIDmodel.py
316 lines (277 loc) · 11.2 KB
/
reIDmodel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
"""
Copyright (C) 2018 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""
import torch
import torch.nn as nn
from torch.nn import init
from torchvision import models
######################################################################
def weights_init_kaiming(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif classname.find('Linear') != -1:
init.kaiming_normal_(m.weight.data, a=0, mode='fan_out')
init.constant_(m.bias.data, 0.0)
elif classname.find('InstanceNorm1d') != -1:
init.normal_(m.weight.data, 1.0, 0.02)
init.constant_(m.bias.data, 0.0)
def weights_init_classifier(m):
classname = m.__class__.__name__
if classname.find('Linear') != -1:
init.normal_(m.weight.data, std=0.001)
init.constant_(m.bias.data, 0.0)
def fix_bn(m):
classname = m.__class__.__name__
if classname.find('BatchNorm') != -1:
m.eval()
# Defines the new fc layer and classification layer
# |--Linear--|--bn--|--relu--|--Linear--|
class ClassBlock(nn.Module):
def __init__(self, input_dim, class_num, droprate=0.5, relu=False, num_bottleneck=512):
super(ClassBlock, self).__init__()
add_block = []
add_block += [nn.Linear(input_dim, num_bottleneck)]
#num_bottleneck = input_dim # We remove the input_dim
add_block += [nn.BatchNorm1d(num_bottleneck, affine=True)]
if relu:
add_block += [nn.LeakyReLU(0.1)]
if droprate>0:
add_block += [nn.Dropout(p=droprate)]
add_block = nn.Sequential(*add_block)
add_block.apply(weights_init_kaiming)
classifier = []
classifier += [nn.Linear(num_bottleneck, class_num)]
classifier = nn.Sequential(*classifier)
classifier.apply(weights_init_classifier)
self.add_block = add_block
self.classifier = classifier
def forward(self, x):
x = self.add_block(x)
x = self.classifier(x)
return x
# Define the ResNet50-based Model
class ft_net(nn.Module):
def __init__(self, class_num, norm=False, pool='avg', stride=2):
super(ft_net, self).__init__()
if norm:
self.norm = True
else:
self.norm = False
model_ft = models.resnet50(pretrained=True)
# avg pooling to global pooling
self.part = 4
if pool=='max':
model_ft.partpool = nn.AdaptiveMaxPool2d((self.part,1))
model_ft.avgpool = nn.AdaptiveMaxPool2d((1,1))
else:
model_ft.partpool = nn.AdaptiveAvgPool2d((self.part,1))
model_ft.avgpool = nn.AdaptiveAvgPool2d((1,1))
# remove the final downsample
if stride == 1:
model_ft.layer4[0].downsample[0].stride = (1,1)
model_ft.layer4[0].conv2.stride = (1,1)
self.model = model_ft
self.classifier = ClassBlock(2048, class_num)
def forward(self, x):
x = self.model.conv1(x)
x = self.model.bn1(x)
x = self.model.relu(x)
x = self.model.maxpool(x)
x = self.model.layer1(x)
x = self.model.layer2(x) # -> 512 32*16
x = self.model.layer3(x)
x = self.model.layer4(x)
f = self.model.partpool(x) # 8 * 2048 4*1
x = self.model.avgpool(x) # 8 * 2048 1*1
x = x.view(x.size(0),x.size(1))
f = f.view(f.size(0),f.size(1)*self.part)
if self.norm:
fnorm = torch.norm(f, p=2, dim=1, keepdim=True) + 1e-8
f = f.div(fnorm.expand_as(f))
x = self.classifier(x)
return f, x
# Define the AB Model
#定义Ea,改造后的残差网络
"""
论文是这样描述Ea的:外观编码器)使用的是在ImageNet预训练的ResNet50模型,
并且移除了全局平均池化层和全连接层,然后添加了一个合适的自适应最大池化层去输出ap code (2048x4x1),
然后通过两个全连接层, 被映射到primary feature f_prim和fine_grained feature f_fine(512 dim)
具体怎么卷积,怎么池化我就不介绍了,注意X开了两个分支,表示身份预测。
"""
class ft_netAB(nn.Module):
def __init__(self, class_num, norm=False, stride=2, droprate=0.5, pool='avg'):
super(ft_netAB, self).__init__()
model_ft = models.resnet50(pretrained=True)
self.part = 4
if pool=='max':
#自适应最大池化层
#partpool将输出重塑为(4,1)
#avgpool将输出重塑为(1,1)
model_ft.partpool = nn.AdaptiveMaxPool2d((self.part,1))
model_ft.avgpool = nn.AdaptiveMaxPool2d((1,1))
else:
#实际使用avg_pool?
model_ft.partpool = nn.AdaptiveAvgPool2d((self.part,1))
model_ft.avgpool = nn.AdaptiveAvgPool2d((1,1))
self.model = model_ft
if stride == 1:
self.model.layer4[0].downsample[0].stride = (1,1)
self.model.layer4[0].conv2.stride = (1,1)
# 对身份进行预测
self.classifier1 = ClassBlock(2048, class_num, 0.5)
self.classifier2 = ClassBlock(2048, class_num, 0.75)
#x[batch,3,256,128]
def forward(self, x):
"""
下面这一段都是为了ap code,其中包含了
[身份信息]+ [衣服+鞋子+手机+包包等],还没有进行分离
"""
x = self.model.conv1(x)
x = self.model.bn1(x)
x = self.model.relu(x)
x = self.model.maxpool(x)
x = self.model.layer1(x)
x = self.model.layer2(x)
x = self.model.layer3(x)
x = self.model.layer4(x)
"""
# 这里进行分离,获得[衣服+鞋子+手机+包包等]
# f[batch_size, 2048, 4, 1]
"""
f = self.model.partpool(x)
# 相当于resize[batch_size, 2048, 4,1]
f = f.view(f.size(0),f.size(1)*self.part)
# 这个值后续不再计算梯度
f = f.detach() # no gradient
# 这里进行分离,分离出身份信息
# x[batch_size, 2048, 1, 1]
x = self.model.avgpool(x)
x = x.view(x.size(0), x.size(1))
# 身份信息又进行分离,分离出主要身份信息,和细致身份信息,
# 同时我们对身份的鉴别,也是这两个综合起来考虑的。
# x1[batch_size, class_num] = [batch_size, 751]
#L_prim
x1 = self.classifier1(x)
# x2[batch_size, class_num] = [batch_size, 751]
#L_fine
x2 = self.classifier2(x)
x=[]
x.append(x1)
x.append(x2)
return f, x
"""
re-id鉴别器是嵌入在生成模块中的,和编码器Ea是共用的。也就是说,编码器,不仅仅是编码器,其还是ReID行人从识别的模型(着重注意),代码注释也比较详细,就不讲解了。主要注意一个点,就这里进行了两次分离:
第一次分离:apcode 分离成 x[身份信息], f[衣服+鞋子+手机+包包等]信息的分离。
第二次分离:x[身份信息]分离成,主要身份信息,以及细致身份信息
至于他们分离的原理,当然是loss的定义了,后续有详细的分析。
"""
# Define the DenseNet121-based Model
class ft_net_dense(nn.Module):
def __init__(self, class_num ):
super().__init__()
model_ft = models.densenet121(pretrained=True)
model_ft.features.avgpool = nn.AdaptiveAvgPool2d((1,1))
model_ft.fc = nn.Sequential()
self.model = model_ft
# For DenseNet, the feature dim is 1024
self.classifier = ClassBlock(1024, class_num)
def forward(self, x):
x = self.model.features(x)
x = torch.squeeze(x)
x = self.classifier(x)
return x
# Define the ResNet50-based Model (Middle-Concat)
# In the spirit of "The Devil is in the Middle: Exploiting Mid-level Representations for Cross-Domain Instance Matching." Yu, Qian, et al. arXiv:1711.08106 (2017).
class ft_net_middle(nn.Module):
def __init__(self, class_num ):
super(ft_net_middle, self).__init__()
model_ft = models.resnet50(pretrained=True)
# avg pooling to global pooling
model_ft.avgpool = nn.AdaptiveAvgPool2d((1,1))
self.model = model_ft
self.classifier = ClassBlock(2048+1024, class_num)
def forward(self, x):
x = self.model.conv1(x)
x = self.model.bn1(x)
x = self.model.relu(x)
x = self.model.maxpool(x)
x = self.model.layer1(x)
x = self.model.layer2(x)
x = self.model.layer3(x)
# x0 n*1024*1*1
x0 = self.model.avgpool(x)
x = self.model.layer4(x)
# x1 n*2048*1*1
x1 = self.model.avgpool(x)
x = torch.cat((x0,x1),1)
x = torch.squeeze(x)
x = self.classifier(x)
return x
# Part Model proposed in Yifan Sun etal. (2018)
class PCB(nn.Module):
def __init__(self, class_num ):
super(PCB, self).__init__()
self.part = 4 # We cut the pool5 to 4 parts
model_ft = models.resnet50(pretrained=True)
self.model = model_ft
self.avgpool = nn.AdaptiveAvgPool2d((self.part,1))
self.dropout = nn.Dropout(p=0.5)
# remove the final downsample
self.model.layer4[0].downsample[0].stride = (1,1)
self.model.layer4[0].conv2.stride = (1,1)
self.softmax = nn.Softmax(dim=1)
# define 4 classifiers
for i in range(self.part):
name = 'classifier'+str(i)
setattr(self, name, ClassBlock(2048, class_num, True, False, 256))
def forward(self, x):
x = self.model.conv1(x)
x = self.model.bn1(x)
x = self.model.relu(x)
x = self.model.maxpool(x)
x = self.model.layer1(x)
x = self.model.layer2(x)
x = self.model.layer3(x)
x = self.model.layer4(x)
x = self.avgpool(x)
f = x
f = f.view(f.size(0),f.size(1)*self.part)
x = self.dropout(x)
part = {}
predict = {}
# get part feature batchsize*2048*4
for i in range(self.part):
part[i] = x[:,:,i].contiguous()
part[i] = part[i].view(x.size(0), x.size(1))
name = 'classifier'+str(i)
c = getattr(self,name)
predict[i] = c(part[i])
y=[]
for i in range(self.part):
y.append(predict[i])
return f, y
class PCB_test(nn.Module):
def __init__(self,model):
super(PCB_test,self).__init__()
self.part = 6
self.model = model.model
self.avgpool = nn.AdaptiveAvgPool2d((self.part,1))
# remove the final downsample
self.model.layer3[0].downsample[0].stride = (1,1)
self.model.layer3[0].conv2.stride = (1,1)
self.model.layer4[0].downsample[0].stride = (1,1)
self.model.layer4[0].conv2.stride = (1,1)
def forward(self, x):
x = self.model.conv1(x)
x = self.model.bn1(x)
x = self.model.relu(x)
x = self.model.maxpool(x)
x = self.model.layer1(x)
x = self.model.layer2(x)
x = self.model.layer3(x)
x = self.model.layer4(x)
x = self.avgpool(x)
y = x.view(x.size(0),x.size(1),x.size(2))
return y