-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathattacks.py
566 lines (495 loc) · 22.9 KB
/
attacks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
import os
from pickle import FALSE
import sys
import numpy as np
from collections import Iterable
import importlib
import open3d as o3d
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.autograd import Variable
from torch.distributions import Categorical
from baselines import *
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = BASE_DIR
sys.path.append(os.path.join(ROOT_DIR, 'model/classifier'))
class PointCloudAttack(object):
def __init__(self, args):
"""Shape-invariant Adversarial Attack for 3D Point Clouds.
"""
self.args = args
self.device = args.device
self.eps = args.eps
self.normal = args.normal
self.step_size = args.step_size
self.num_class = args.num_class
self.max_steps = args.max_steps
self.top5_attack = args.top5_attack
assert args.transfer_attack_method is None or args.query_attack_method is None
assert not args.transfer_attack_method is None or not args.query_attack_method is None
self.attack_method = args.transfer_attack_method if args.query_attack_method is None else args.query_attack_method
self.build_models()
self.defense_method = args.defense_method
if not args.defense_method is None:
self.pre_head = self.get_defense_head(args.defense_method)
def build_models(self):
"""Build white-box surrogate model and black-box target model.
"""
# load white-box surrogate models
MODEL = importlib.import_module(self.args.surrogate_model)
wb_classifier = MODEL.get_model(
self.num_class,
normal_channel=self.normal
)
wb_classifier = wb_classifier.to(self.device)
# load black-box target models
MODEL = importlib.import_module(self.args.target_model)
classifier = MODEL.get_model(
self.num_class,
normal_channel=self.normal
)
classifier = classifier.to(self.args.device)
# load model weights
wb_classifier = self.load_models(wb_classifier, self.args.surrogate_model)
classifier = self.load_models(classifier, self.args.target_model)
# set eval
self.wb_classifier = wb_classifier.eval()
self.classifier = classifier.eval()
def load_models(self, classifier, model_name):
"""Load white-box surrogate model and black-box target model.
"""
model_path = os.path.join('./checkpoint/' + self.args.dataset, model_name)
if os.path.exists(model_path + '.pth'):
checkpoint = torch.load(model_path + '.pth')
elif os.path.exists(model_path + '.t7'):
checkpoint = torch.load(model_path + '.t7')
elif os.path.exists(model_path + '.tar'):
checkpoint = torch.load(model_path + '.tar')
else:
raise NotImplementedError
try:
if 'model_state_dict' in checkpoint:
classifier.load_state_dict(checkpoint['model_state_dict'])
elif 'model_state' in checkpoint:
classifier.load_state_dict(checkpoint['model_state'])
else:
classifier.load_state_dict(checkpoint)
except:
classifier = nn.DataParallel(classifier)
classifier.load_state_dict(checkpoint)
return classifier
def CWLoss(self, logits, target, kappa=0, tar=False, num_classes=40):
"""Carlini & Wagner attack loss.
Args:
logits (torch.cuda.FloatTensor): the predicted logits, [1, num_classes].
target (torch.cuda.LongTensor): the label for points, [1].
"""
target = torch.ones(logits.size(0)).type(torch.cuda.FloatTensor).mul(target.float())
target_one_hot = Variable(torch.eye(num_classes).type(torch.cuda.FloatTensor)[target.long()].cuda())
real = torch.sum(target_one_hot*logits, 1)
if not self.top5_attack:
### top-1 attack
other = torch.max((1-target_one_hot)*logits - (target_one_hot*10000), 1)[0]
else:
### top-5 attack
other = torch.topk((1-target_one_hot)*logits - (target_one_hot*10000), 5)[0][:, 4]
kappa = torch.zeros_like(other).fill_(kappa)
if tar:
return torch.sum(torch.max(other-real, kappa))
else :
return torch.sum(torch.max(real-other, kappa))
def run(self, points, target):
"""Main attack method.
Args:
points (torch.cuda.FloatTensor): the point cloud with N points, [1, N, 6].
target (torch.cuda.LongTensor): the label for points, [1].
"""
if self.attack_method == 'ifgm_ours':
return self.shape_invariant_ifgm(points, target)
elif self.attack_method == 'simba':
return self.simba_attack(points, target)
elif self.attack_method == 'simbapp':
return self.simbapp_attack(points, target)
elif self.attack_method == 'ours':
return self.shape_invariant_query_attack(points, target)
else:
NotImplementedError
def get_defense_head(self, method):
"""Set the pre-processing based defense module.
Args:
method (str): defense method name.
"""
if method == 'sor':
pre_head = SORDefense(k=2, alpha=1.1)
elif method == 'srs':
pre_head = SRSDefense(drop_num=500)
elif method == 'dupnet':
pre_head = DUPNet(sor_k=2, sor_alpha=1.1, npoint=1024, up_ratio=4)
else:
raise NotImplementedError
return pre_head
def get_normal_vector(self, points):
"""Calculate the normal vector.
Args:
points (torch.cuda.FloatTensor): the point cloud with N points, [1, N, 3].
"""
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(points.squeeze(0).detach().cpu().numpy())
pcd.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamKNN(knn=20))
normal_vec = torch.FloatTensor(pcd.normals).cuda().unsqueeze(0)
return normal_vec
def get_spin_axis_matrix(self, normal_vec):
"""Calculate the spin-axis matrix.
Args:
normal_vec (torch.cuda.FloatTensor): the normal vectors for all N points, [1, N, 3].
"""
_, N, _ = normal_vec.shape
x = normal_vec[:,:,0] # [1, N]
y = normal_vec[:,:,1] # [1, N]
z = normal_vec[:,:,2] # [1, N]
assert abs(normal_vec).max() <= 1
u = torch.zeros(1, N, 3, 3).cuda()
denominator = torch.sqrt(1-z**2) # \sqrt{1-z^2}, [1, N]
u[:,:,0,0] = y / denominator
u[:,:,0,1] = - x / denominator
u[:,:,0,2] = 0.
u[:,:,1,0] = x * z / denominator
u[:,:,1,1] = y * z / denominator
u[:,:,1,2] = - denominator
u[:,:,2] = normal_vec
# revision for |z| = 1, boundary case.
pos = torch.where(abs(z ** 2 - 1) < 1e-4)[1]
u[:,pos,0,0] = 1 / np.sqrt(2)
u[:,pos,0,1] = - 1 / np.sqrt(2)
u[:,pos,0,2] = 0.
u[:,pos,1,0] = z[:,pos] / np.sqrt(2)
u[:,pos,1,1] = z[:,pos] / np.sqrt(2)
u[:,pos,1,2] = 0.
u[:,pos,2,0] = 0.
u[:,pos,2,1] = 0.
u[:,pos,2,2] = z[:,pos]
return u.data
def get_transformed_point_cloud(self, points, normal_vec):
"""Calculate the spin-axis matrix.
Args:
points (torch.cuda.FloatTensor): the point cloud with N points, [1, N, 3].
normal_vec (torch.cuda.FloatTensor): the normal vectors for all N points, [1, N, 3].
"""
intercept = torch.mul(points, normal_vec).sum(-1, keepdim=True) # P \cdot N, [1, N, 1]
spin_axis_matrix = self.get_spin_axis_matrix(normal_vec) # U, [1, N, 3, 3]
translation_matrix = torch.mul(intercept, normal_vec).data # (P \cdot N) N, [1, N, 3]
new_points = points + translation_matrix # P + (P \cdot N) N, [1, N, 3]
new_points = new_points.unsqueeze(-1) # P + (P \cdot N) N, [1, N, 3, 1]
new_points = torch.matmul(spin_axis_matrix, new_points) # P' = U (P + (P \cdot N) N), [1, N, 3, 1]
new_points = new_points.squeeze(-1).data # P', [1, N, 3]
return new_points, spin_axis_matrix, translation_matrix
def get_original_point_cloud(self, new_points, spin_axis_matrix, translation_matrix):
"""Calculate the spin-axis matrix.
Args:
new_points (torch.cuda.FloatTensor): the transformed point cloud with N points, [1, N, 3].
spin_axis_matrix (torch.cuda.FloatTensor): the rotate matrix for transformation, [1, N, 3, 3].
translation_matrix (torch.cuda.FloatTensor): the offset matrix for transformation, [1, N, 3, 3].
"""
inputs = torch.matmul(spin_axis_matrix.transpose(-1, -2), new_points.unsqueeze(-1)) # U^T P', [1, N, 3, 1]
inputs = inputs - translation_matrix.unsqueeze(-1) # P = U^T P' - (P \cdot N) N, [1, N, 3, 1]
inputs = inputs.squeeze(-1) # P, [1, N, 3]
return inputs
def shape_invariant_ifgm(self, points, target):
"""Black-box I-FGSM based on shape-invariant sensitivity maps.
Args:
points (torch.cuda.FloatTensor): the point cloud with N points, [1, N, 6].
target (torch.cuda.LongTensor): the label for points, [1].
"""
normal_vec = points[:,:,-3:].data # N, [1, N, 3]
normal_vec = normal_vec / torch.sqrt(torch.sum(normal_vec ** 2, dim=-1, keepdim=True)) # N, [1, N, 3]
points = points[:,:,:3].data # P, [1, N, 3]
ori_points = points.data
clip_func = ClipPointsLinf(budget=self.eps)# * np.sqrt(3*1024))
for i in range(self.max_steps):
# P -> P', detach()
new_points, spin_axis_matrix, translation_matrix = self.get_transformed_point_cloud(points, normal_vec)
new_points = new_points.detach()
new_points.requires_grad = True
# P' -> P
points = self.get_original_point_cloud(new_points, spin_axis_matrix, translation_matrix)
points = points.transpose(1, 2) # P, [1, 3, N]
# get white-box gradients
if not self.defense_method is None:
logits = self.wb_classifier(self.pre_head(points))
else:
logits = self.wb_classifier(points)
loss = self.CWLoss(logits, target, kappa=0., tar=False, num_classes=self.num_class)
self.wb_classifier.zero_grad()
loss.backward()
# print(loss.item(), logits.max(1)[1], target)
grad = new_points.grad.data # g, [1, N, 3]
grad[:,:,2] = 0.
# update P', P and N
# # Linf
# new_points = new_points - self.step_size * torch.sign(grad)
# L2
norm = torch.sum(grad ** 2, dim=[1, 2]) ** 0.5
new_points = new_points - self.step_size * np.sqrt(3*1024) * grad / (norm[:, None, None] + 1e-9)
points = self.get_original_point_cloud(new_points, spin_axis_matrix, translation_matrix) # P, [1, N, 3]
points = clip_func(points, ori_points)
# points = torch.min(torch.max(points, ori_points - self.eps), ori_points + self.eps) # P, [1, N, 3]
normal_vec = self.get_normal_vector(points) # N, [1, N, 3]
with torch.no_grad():
adv_points = points.data
if not self.defense_method is None:
adv_logits = self.classifier(self.pre_head(points.transpose(1, 2).detach()))
else:
adv_logits = self.classifier(points.transpose(1, 2).detach())
adv_target = adv_logits.data.max(1)[1]
# print(target)
# print(adv_target)
if self.top5_attack:
target_top_5 = adv_logits.topk(5)[1]
if target in target_top_5:
adv_target = target
else:
adv_target = -1
del normal_vec, grad, new_points, spin_axis_matrix, translation_matrix
return adv_points, adv_target, (adv_logits.data.max(1)[1] != target).sum().item()
def simba_attack(self, points, target):
"""Blaxk-box query-based SimBA attack.
Args:
points (torch.cuda.FloatTensor): the point cloud with N points, [1, N, 6].
target (torch.cuda.LongTensor): the label for points, [1].
"""
points = points[:,:,:3].data # P, [1, N, 3]
# initialization
query_costs = 0
with torch.no_grad():
points = points.transpose(1, 2)
if not self.defense_method is None:
adv_logits = self.classifier(self.pre_head(points.detach()))
else:
adv_logits = self.classifier(points)
adv_target = adv_logits.max(1)[1]
query_costs += 1
# if categorized wrong
if self.top5_attack:
target_top_5 = adv_logits.topk(5)[1]
if target in target_top_5:
adv_target = target
else:
adv_target = -1
if adv_target != target:
return points.transpose(1, 2), adv_target, query_costs
# constructing random list
basis_list = []
for j in range(points.shape[2]):
for i in range(3):
basis_list.append((i, j))
basis_list = np.array(basis_list)
np.random.shuffle(basis_list)
# query loop
i = 0
best_loss = -999.
while best_loss < 0 and i < len(basis_list):
channel, idx = basis_list[i]
for eps in {self.step_size, -self.step_size}:
pert = torch.zeros_like(points).cuda() # \delta, [1, 3, N]
pert[:,channel,idx] += eps
inputs = points + pert
with torch.no_grad():
if not self.defense_method is None:
logits = self.classifier(self.pre_head(inputs.detach()))
else:
logits = self.classifier(inputs.detach()) # [1, num_class]
query_costs += 1
loss = self.CWLoss(logits, target, kappa=-999., tar=True, num_classes=self.num_class)
if loss.item() > best_loss:
# print(loss.item())
best_loss = loss.item()
points = points + pert
adv_target = logits.max(1)[1]
break
i += 1
# print(query_costs)
# print(target)
# print(adv_target)
adv_points = points.transpose(1, 2).data
if self.top5_attack:
target_top_5 = logits.topk(5)[1]
if target in target_top_5:
adv_target = target
else:
adv_target = -1
del grad
return adv_points, adv_target, query_costs
def simbapp_attack(self, points, target):
"""Blaxk-box query-based SimBA++ attack.
Args:
points (torch.cuda.FloatTensor): the point cloud with N points, [1, N, 6].
target (torch.cuda.LongTensor): the label for points, [1].
"""
points = points[:,:,:3].data # P, [1, N, 3]
# initialization
query_costs = 0
with torch.no_grad():
points = points.transpose(1, 2)
if not self.defense_method is None:
adv_logits = self.classifier(self.pre_head(points.detach()))
else:
adv_logits = self.classifier(points)
adv_target = adv_logits.max(1)[1]
query_costs += 1
# if categorized wrong
if self.top5_attack:
target_top_5 = adv_logits.topk(5)[1]
if target in target_top_5:
adv_target = target
else:
adv_target = -1
if adv_target != target:
return points.transpose(1, 2), adv_target, query_costs
# get white-box gradients
points = points.detach()
points.requires_grad = True
logits = self.wb_classifier(points)
loss = self.CWLoss(logits, target, kappa=-999., tar=True, num_classes=self.num_class)
self.wb_classifier.zero_grad()
loss.backward()
grad = points.grad.data # g, [1, 3, N]
grad = abs(grad).reshape(-1)
# # rank
# basis_list = []
# for j in range(points.shape[2]):
# for i in range(3):
# basis_list.append((i, j, grad[0][i][j]))
# sorted_basis_list = sorted(basis_list, key=lambda c: c[2], reverse=True)
# query loop
i = 0
best_loss = -999.
while best_loss < 0 and i < grad.shape[0]:
# channel, idx, _ = sorted_basis_list[i]
m = Categorical(grad)
choice = m.sample()
channel = int(choice % 3)
idx = int(choice // 3)
for eps in {self.step_size, -self.step_size}:
pert = torch.zeros_like(points).cuda() # \delta, [1, 3, N]
pert[:,channel,idx] += (eps + 0.1*torch.randn(1).cuda())
inputs = points + pert
with torch.no_grad():
if not self.defense_method is None:
logits = self.classifier(self.pre_head(inputs.detach()))
else:
logits = self.classifier(inputs.detach()) # [1, num_class]
query_costs += 1
loss = self.CWLoss(logits, target, kappa=-999., tar=True, num_classes=self.num_class)
if loss.item() > best_loss:
# print(loss.item())
best_loss = loss.item()
points = points + pert
adv_target = logits.max(1)[1]
break
i += 1
# print(query_costs)
# print(target)
# print(adv_target)
adv_points = points.transpose(1, 2).data
if self.top5_attack:
target_top_5 = logits.topk(5)[1]
if target in target_top_5:
adv_target = target
else:
adv_target = -1
del grad, m
return adv_points, adv_target, query_costs
def shape_invariant_query_attack(self, points, target):
"""Blaxk-box query-based attack based on point-cloud sensitivity maps.
Args:
points (torch.cuda.FloatTensor): the point cloud with N points, [1, N, 6].
target (torch.cuda.LongTensor): the label for points, [1].
"""
normal_vec = points[:,:,-3:].data # N, [1, N, 3]
normal_vec = normal_vec / torch.sqrt(torch.sum(normal_vec ** 2, dim=-1, keepdim=True)) # N, [1, N, 3]
points = points[:,:,:3].data # P, [1, N, 3]
ori_points = points.data
# initialization
query_costs = 0
with torch.no_grad():
points = points.transpose(1, 2)
if not self.defense_method is None:
adv_logits = self.classifier(self.pre_head(points.detach()))
else:
adv_logits = self.classifier(points)
adv_target = adv_logits.max(1)[1]
query_costs += 1
# if categorized wrong
if self.top5_attack:
target_top_5 = adv_logits.topk(5)[1]
if target in target_top_5:
adv_target = target
else:
adv_target = -1
if adv_target != target:
return points.transpose(1, 2), adv_target, query_costs
# P -> P', detach()
points = points.transpose(1, 2)
new_points, spin_axis_matrix, translation_matrix = self.get_transformed_point_cloud(points.detach(), normal_vec)
new_points = new_points.detach()
new_points.requires_grad = True
# P' -> P
inputs = self.get_original_point_cloud(new_points, spin_axis_matrix, translation_matrix)
inputs = torch.min(torch.max(inputs, ori_points - self.eps), ori_points + self.eps)
inputs = inputs.transpose(1, 2) # P, [1, 3, N]
# get white-box gradients
logits = self.wb_classifier(inputs)
loss = self.CWLoss(logits, target, kappa=-999., tar=True, num_classes=self.num_class)
self.wb_classifier.zero_grad()
loss.backward()
grad = new_points.grad.data # g, [1, N, 3]
grad[:,:,2] = 0.
new_points.requires_grad = False
rankings = torch.sqrt(grad[:,:,0] ** 2 + grad[:,:,1] ** 2) # \sqrt{g_{x'}^2+g_{y'}^2}, [1, N]
directions = grad / (rankings.unsqueeze(-1)+1e-16) # (g_{x'}/r,g_{y'}/r,0), [1, N, 3]
# rank the sensitivity map in the desending order
point_list = []
for i in range(points.size(1)):
point_list.append((i, directions[:,i,:], rankings[:,i].item()))
sorted_point_list = sorted(point_list, key=lambda c: c[2], reverse=True)
# query loop
i = 0
best_loss = -999.
while best_loss < 0 and i < len(sorted_point_list):
idx, direction, _ = sorted_point_list[i]
for eps in {self.step_size, -self.step_size}:
pert = torch.zeros_like(new_points).cuda()
pert[:,idx,:] += eps * direction
inputs = new_points + pert
inputs = torch.matmul(spin_axis_matrix.transpose(-1, -2), inputs.unsqueeze(-1)) # U^T P', [1, N, 3, 1]
inputs = inputs - translation_matrix.unsqueeze(-1) # P = U^T P' - (P \cdot N) N, [1, N, 3, 1]
inputs = inputs.squeeze(-1).transpose(1, 2) # P, [1, 3, N]
# inputs = torch.clamp(inputs, -1, 1)
with torch.no_grad():
if not self.defense_method is None:
logits = self.classifier(self.pre_head(inputs.detach()))
else:
logits = self.classifier(inputs.detach()) # [1, num_class]
query_costs += 1
loss = self.CWLoss(logits, target, kappa=-999., tar=True, num_classes=self.num_class)
if loss.item() > best_loss:
# print(loss.item())
best_loss = loss.item()
new_points = new_points + pert
adv_target = logits.max(1)[1]
break
i += 1
# print(query_costs)
# print(target)
# print(adv_target)
adv_points = inputs.transpose(1, 2).data
if self.top5_attack:
target_top_5 = logits.topk(5)[1]
if target in target_top_5:
adv_target = target
else:
adv_target = -1
del grad
return adv_points, adv_target, query_costs