-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmir.py
162 lines (126 loc) · 6.13 KB
/
mir.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import argparse
import torch
import os
import json
import math
from tqdm import tqdm
from PIL import Image
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
from llava.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path
from mir_util import *
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default=None)
parser.add_argument("--base_llm", type=str, default=None)
parser.add_argument("--text_data_path", type=str, default="")
parser.add_argument("--image_data_path", type=str, default="")
parser.add_argument("--eval_num", type=int, default=100)
parser.add_argument("--mode", type=str, default="fast")
args = parser.parse_args()
### Model ###
disable_torch_init()
model_path = args.model_path
model_path = os.path.expanduser(model_path)
model_base = args.base_llm
model_name = get_model_name_from_path(model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, model_base, model_name)
def read_story_file(file_path):
with open(file_path, 'r', encoding='utf-8') as file:
content = file.read()
parts = content.split('@highlight')
story = parts[0].strip()
highlights = [part.strip() for part in parts[1:]]
return story, highlights
### Data ###
text_data_path = args.text_data_path
data_texts = os.listdir(text_data_path)
image_base_path = args.image_data_path
data_images = os.listdir(image_base_path)
# NOTE: You can specify your own data for evaluation
# NOTE: For example, we can use images from TextVQA val and text from CNN/DM as follows.
# # cnn/daily mail and textvqa
# text_data_path = "/mnt/hwfile/mllm/huangqidong/nlp/cnn/stories"
# data_texts = os.listdir(text_data_path)
# # TextVQA
# image_base_path = "/mnt/hwfile/mllm/chenlin/llava/data/eval/textvqa/train_images/"
# question_file = "./playground/data/eval/textvqa/llava_textvqa_val_v051_ocr.jsonl"
# questions = [json.loads(q) for q in open(os.path.expanduser(question_file), "r")]
# data_images = [questions[i]["image"] for i in range(len(questions))]
### Get vision/text tokens ###
all_hidden_states = {"vision": [], "text": []}
for idx in tqdm(range(args.eval_num)):
data_image = data_images[idx]
data_text = data_texts[idx]
raw_image = os.path.join(image_base_path, data_image)
raw_image = Image.open(raw_image)
raw_image = raw_image.convert("RGB")
image_tensor = process_images([raw_image], image_processor, model.config)[0]
# If we use text from CNN/DM, we can process with read_story_file
# caption = data_image["conversations"][1]["value"]
caption = read_story_file(os.path.join(text_data_path, data_text))[0]
qs = ""
if model.config.mm_use_im_start_end:
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
else:
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
# conv_mode = "llava_v1"
conv_mode = "vicuna_v1"
conv = conv_templates[conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], caption)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt')
# input_ids = torch.tensor(tokenizer(prompt).input_ids)
# Inference
image_tensor = image_tensor.unsqueeze(0)
input_ids = input_ids.to(device='cuda', non_blocking=True).unsqueeze(0)
image_start_idx = torch.where(input_ids == IMAGE_TOKEN_INDEX)[1]
with torch.inference_mode():
outputs = model.generate(
input_ids,
images=image_tensor.to(dtype=torch.float16, device='cuda', non_blocking=True),
image_sizes=raw_image.size,
do_sample=False,
num_beams=1,
max_new_tokens=1,
output_attentions=True,
output_hidden_states=True,
return_dict_in_generate=True,
use_cache=True,
)
hidden_states = outputs.hidden_states
latent_hidden_states = [hidden_state.squeeze() for hidden_state in hidden_states[0]]
# inputs_embeds = hidden_states[0][0]
# output_ids = outputs[0]
# output_text = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
# You may need to specify the number of image tokens, e.g, 576 for llava-v1.5 7B model
vision_hidden_states = [latent[image_start_idx:image_start_idx+576,:].detach().cpu() for latent in latent_hidden_states]
text_hidden_states = [latent[image_start_idx+576:,:].detach().cpu() for latent in latent_hidden_states]
all_hidden_states["vision"].append(vision_hidden_states) # 100 * [33, 576, 4096]
all_hidden_states["text"].append(text_hidden_states)
### MIR Eval ###
layer_length = len(all_hidden_states["vision"][0])
plot_data = {"Per-Layer-MIR":[]}
for layer_idx in range(1, layer_length):
vision_features = [hidden_states[layer_idx].float().cuda() for hidden_states in all_hidden_states["vision"]]
text_features = [hidden_states[layer_idx].float().cuda() for hidden_states in all_hidden_states["text"]]
vision_features = torch.cat(vision_features, dim=0)
text_features = torch.cat(text_features, dim=0)
# Text-Centric Normalization
scale_factor = 1. / text_features.norm(p=2, dim=-1).mean(0)
vision_features = scale_factor * vision_features
text_features = scale_factor * text_features
# print(f"Scale factor: {scale_factor}")
# 3-Sigma Outlier Removal
vision_features = replace_outliers_with_median_l2(vision_features)
text_features = replace_outliers_with_median_l2(text_features)
# Switch between fast mode and accurate mode, we use fast mode by default
if args.mode == "fast":
plot_data["Per-Layer-MIR"].append(calculate_fid_pytorch(vision_features, text_features))
else:
plot_data["Per-Layer-MIR"].append(calculate_fid(vision_features, text_features))
print("Layer #{}\tPer-Layer MIR: {}".format(layer_idx, plot_data["Per-Layer-MIR"][-1]))
final_mir = math.log(sum(plot_data["Per-Layer-MIR"]), 10)
print(f"Overall MIR: {final_mir}")