Skip to content

Latest commit

 

History

History
303 lines (234 loc) · 5.62 KB

File metadata and controls

303 lines (234 loc) · 5.62 KB

Job Assignment Problem

Let there be N workers and N jobs. Any worker can be assigned to perform any job, incurring some cost that may vary depending on the work-job assignment. It is required to perform all jobs by assigning exactly one worker to each job and exactly one job to each agent in such a way that the total cost of the assignment is minimized.

Complete Algorithm:

/* findMinCost uses Least() and Add() to maintain the
   list of live nodes

   Least() finds a live node with least cost, deletes
   it from the list and returns it

   Add(x) calculates cost of x and adds it to the list
   of live nodes

   Implements list of live nodes as a min heap */


// Search Space Tree Node
node
{
   int job_number;
   int worker_number;
   node parent;
   int cost;
}

// Input: Cost Matrix of Job Assignment problem
// Output: Optimal cost and Assignment of Jobs
algorithm findMinCost (costMatrix mat[][])
{
   // Initialize list of live nodes(min-Heap)
   // with root of search tree i.e. a Dummy node
   while (true)
   {
      // Find a live node with least estimated cost
      E = Least();

      // The found node is deleted from the list
      // of live nodes
      if (E is a leaf node)
      {
         printSolution();
         return;
      }

     for each child x of E
     {
         Add(x); // Add x to list of live nodes;
         x->parent = E; // Pointer for path to root
     }
   }
} 

C++ Implementation

// Program to solve Job Assignment problem
// using Branch and Bound
#include <bits/stdc++.h>
using namespace std;
#define N 4

// state space tree node
struct Node
{
	// stores parent node of current node
	// helps in tracing path when answer is found
	Node* parent;

	// contains cost for ancestors nodes
	// including current node
	int pathCost;

	// contains least promising cost
	int cost;

	// contain worker number
	int workerID;

	// contains Job ID
	int jobID;

	// Boolean array assigned will contains
	// info about available jobs
	bool assigned[N];
};

// Function to allocate a new search tree node
// Here Person x is assigned to job y
Node* newNode(int x, int y, bool assigned[],
			Node* parent)
{
	Node* node = new Node;

	for (int j = 0; j < N; j++)
		node->assigned[j] = assigned[j];
	node->assigned[y] = true;

	node->parent = parent;
	node->workerID = x;
	node->jobID = y;

	return node;
}

// Function to calculate the least promising cost
// of node after worker x is assigned to job y.
int calculateCost(int costMatrix[N][N], int x,
				int y, bool assigned[])
{
	int cost = 0;

	// to store unavailable jobs
	bool available[N] = {true};

	// start from next worker
	for (int i = x + 1; i < N; i++)
	{
		int min = INT_MAX, minIndex = -1;

		// do for each job
		for (int j = 0; j < N; j++)
		{
			// if job is unassigned
			if (!assigned[j] && available[j] &&
				costMatrix[i][j] < min)
			{
				// store job number
				minIndex = j;

				// store cost
				min = costMatrix[i][j];
			}
		}

		// add cost of next worker
		cost += min;

		// job becomes unavailable
		available[minIndex] = false;
	}

	return cost;
}

// Comparison object to be used to order the heap
struct comp
{
	bool operator()(const Node* lhs,
				const Node* rhs) const
	{
		return lhs->cost > rhs->cost;
	}
};

// print Assignments
void printAssignments(Node *min)
{
	if(min->parent==NULL)
		return;

	printAssignments(min->parent);
	cout << "Assign Worker " << char(min->workerID + 'A')
		<< " to Job " << min->jobID << endl;

}

// Finds minimum cost using Branch and Bound.
int findMinCost(int costMatrix[N][N])
{
	// Create a priority queue to store live nodes of
	// search tree;
	priority_queue<Node*, std::vector<Node*>, comp> pq;

	// initialize heap to dummy node with cost 0
	bool assigned[N] = {false};
	Node* root = newNode(-1, -1, assigned, NULL);
	root->pathCost = root->cost = 0;
	root->workerID = -1;

	// Add dummy node to list of live nodes;
	pq.push(root);

	// Finds a live node with least cost,
	// add its childrens to list of live nodes and
	// finally deletes it from the list.
	while (!pq.empty())
	{
	// Find a live node with least estimated cost
	Node* min = pq.top();

	// The found node is deleted from the list of
	// live nodes
	pq.pop();

	// i stores next worker
	int i = min->workerID + 1;

	// if all workers are assigned a job
	if (i == N)
	{
		printAssignments(min);
		return min->cost;
	}

	// do for each job
	for (int j = 0; j < N; j++)
	{
		// If unassigned
		if (!min->assigned[j])
		{
		// create a new tree node
		Node* child = newNode(i, j, min->assigned, min);

		// cost for ancestors nodes including current node
		child->pathCost = min->pathCost + costMatrix[i][j];

		// calculate its lower bound
		child->cost = child->pathCost +
			calculateCost(costMatrix, i, j, child->assigned);

		// Add child to list of live nodes;
		pq.push(child);
		}
	}
	}
}

// Driver code
int main()
{
	// x-coordinate represents a Worker
	// y-coordinate represents a Job
	int costMatrix[N][N] =
	{
		{9, 2, 7, 8},
		{6, 4, 3, 7},
		{5, 8, 1, 8},
		{7, 6, 9, 4}
	};


	/* int costMatrix[N][N] =
	{
		{82, 83, 69, 92},
		{77, 37, 49, 92},
		{11, 69, 5, 86},
		{ 8, 9, 98, 23}
	};
	*/

	/* int costMatrix[N][N] =
	{
		{2500, 4000, 3500},
		{4000, 6000, 3500},
		{2000, 4000, 2500}
	};*/

	/*int costMatrix[N][N] =
	{
		{90, 75, 75, 80},
		{30, 85, 55, 65},
		{125, 95, 90, 105},
		{45, 110, 95, 115}
	};*/


	cout << "\nOptimal Cost is "
		<< findMinCost(costMatrix);

	return 0;
}


Output


Assign Worker A to Job 1
Assign Worker B to Job 0
Assign Worker C to Job 2
Assign Worker D to Job 3

Optimal Cost is 13