-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathoptimiser.py
181 lines (150 loc) · 6.55 KB
/
optimiser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import numpy as np
import torch
from collections import namedtuple
from fed_utilis import PiecewiseLinear
from torch.optim.optimizer import Optimizer, required
import torch.distributed as dist
class TorchOptimiser():
def __init__(self, weights, optimizer, step_number=0, **opt_params):
self.weights = weights
self.step_number = step_number
self.opt_params = opt_params
self._opt = optimizer(weights, **self.param_values())
def param_values(self):
return {k: v(self.step_number) if callable(v) else v for k, v in self.opt_params.items()}
def step(self):
self.step_number += 1
self._opt.param_groups[0].update(**self.param_values())
self._opt.step()
def __repr__(self):
return repr(self._opt)
def SGD(weights, lr=0, momentum=0, weight_decay=0, dampening=0, nesterov=False):
return TorchOptimiser(weights, torch.optim.SGD, lr=lr, momentum=momentum,
weight_decay=weight_decay, dampening=dampening,
nesterov=nesterov)
class FedProx(Optimizer):
def __init__(self, params, ratio, gmf, lr=required, momentum=0, dampening=0,
weight_decay=0, nesterov=False, variance=0, mu=0):
self.gmf = gmf
self.ratio = ratio
self.itr = 0
self.a_sum = 0
self.mu = mu
if lr is not required and lr < 0.0:
raise ValueError("Invalid learning rate: {}".format(lr))
if momentum < 0.0:
raise ValueError("Invalid momentum value: {}".format(momentum))
if weight_decay < 0.0:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
defaults = dict(lr=lr, momentum=momentum, dampening=dampening,
weight_decay=weight_decay, nesterov=nesterov, variance=variance)
if nesterov and (momentum <= 0 or dampening != 0):
raise ValueError("Nesterov momentum requires a momentum and zero dampening")
super(FedProx, self).__init__(params, defaults)
def __setstate__(self, state):
super(FedProx, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('nesterov', False)
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
weight_decay = group['weight_decay']
momentum = group['momentum']
dampening = group['dampening']
nesterov = group['nesterov']
for p in group['params']:
if p.grad is None:
continue
d_p = p.grad.data
if weight_decay != 0:
d_p.add_(weight_decay, p.data)
param_state = self.state[p]
if 'old_init' not in param_state:
param_state['old_init'] = torch.clone(p.data).detach()
if momentum != 0:
if 'momentum_buffer' not in param_state:
buf = param_state['momentum_buffer'] = torch.clone(d_p).detach()
else:
buf = param_state['momentum_buffer']
buf.mul_(momentum).add_(1 - dampening, d_p)
if nesterov:
d_p = d_p.add(momentum, buf)
else:
d_p = buf
# apply proximal update
d_p.add_(self.mu, p.data - param_state['old_init'])
p.data.add_(-group['lr'], d_p)
return loss
def average(self):
param_list = []
for group in self.param_groups:
for p in group['params']:
p.data.mul_(self.ratio)
param_list.append(p.data)
communicate(param_list, dist.all_reduce)
for group in self.param_groups:
for p in group['params']:
param_state = self.state[p]
param_state['old_init'] = torch.clone(p.data).detach()
# Reinitialize momentum buffer
if 'momentum_buffer' in param_state:
param_state['momentum_buffer'].zero_()
# helper functions for fedprox
def communicate(tensors, communication_op):
"""
Reference: https://github.com/facebookresearch/stochastic_gradient_push
Communicate a list of tensors.
Arguments:
tensors (Iterable[Tensor]): list of tensors.
communication_op: a method or partial object which takes a tensor as
input and communicates it. It can be a partial object around
something like torch.distributed.all_reduce.
"""
flat_tensor = flatten_tensors(tensors)
communication_op(tensor=flat_tensor)
for f, t in zip(unflatten_tensors(flat_tensor, tensors), tensors):
t.set_(f)
def flatten_tensors(tensors):
"""
Reference: https://github.com/facebookresearch/stochastic_gradient_push
Flatten dense tensors into a contiguous 1D buffer. Assume tensors are of
same dense type.
Since inputs are dense, the resulting tensor will be a concatenated 1D
buffer. Element-wise operation on this buffer will be equivalent to
operating individually.
Arguments:
tensors (Iterable[Tensor]): dense tensors to flatten.
Returns:
A 1D buffer containing input tensors.
"""
if len(tensors) == 1:
return tensors[0].view(-1).clone()
flat = torch.cat([t.view(-1) for t in tensors], dim=0)
return flat
def unflatten_tensors(flat, tensors):
"""
Reference: https://github.com/facebookresearch/stochastic_gradient_push
View a flat buffer using the sizes of tensors. Assume that tensors are of
same dense type, and that flat is given by flatten_dense_tensors.
Arguments:
flat (Tensor): flattened dense tensors to unflatten.
tensors (Iterable[Tensor]): dense tensors whose sizes will be used to
unflatten flat.
Returns:
Unflattened dense tensors with sizes same as tensors and values from
flat.
"""
outputs = []
offset = 0
for tensor in tensors:
numel = tensor.numel()
outputs.append(flat.narrow(0, offset, numel).view_as(tensor))
offset += numel
return tuple(outputs)