-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfedmain.py
238 lines (173 loc) · 10.8 KB
/
fedmain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import zipfile
import torch
import random
from copy import deepcopy
import numpy as np
import time
from torch.utils.tensorboard import SummaryWriter
from aggregator import parameter_aggregate, read_out
from fed_utilis import *
from LocalUpdate import LocalClientUpdate
from base_module.data import data_split, generate_dataset, load_metr_la_data
from base_module.options import Options
from torch.utils.data import DataLoader, Dataset
from base_module.running import *
from base_module.data import *
from base_module.pretrain_trans import *
import os
os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
def main(args):
device = torch.device('cuda')
logger.info("Using device: {}".format(device))
if device == 'cuda':
logger.info("Device index: {}".format(torch.cuda.current_device()))
# Build data
logger.info("Loading and preprocessing data ...")
X, std, mean = load_metr_la_data(config['dataset'])
logger.info('{} have been loader, the nodes is {}'.format(config['dataset'], X.shape[0]))
# If graph attented
A = np.zeros((config['clients'], config['clients']))
my_data = X
feat_dim = X.shape[1] # dimensionality of data features NB 2
# Split dataset
split_line1 = int(X.shape[2] * 0.6)
split_line2 = int(X.shape[2] * 0.8)
train_original_data = my_data[:, :, :split_line1]
val_original_data = my_data[:, :, split_line1:split_line2]
test_original_data = my_data[:, :, split_line2:]
train_indices = [i for i in range(train_original_data.shape[2] - config['total_len'])]
test_indices = [i for i in range(test_original_data.shape[2] - config['total_len'])]
val_indices = [i for i in range(val_original_data.shape[2] - config['total_len'])]
train_set = generate_dataset(train_original_data, config['total_len'])
val_set = generate_dataset(val_original_data, config['total_len'])
test_set = generate_dataset(test_original_data, config['total_len'])
logger.info("{} samples may be used for training".format(len(train_indices)))
logger.info("{} samples will be used for validation".format(len(val_indices)))
logger.info("{} samples will be used for testing".format(len(test_indices)))
with open(os.path.join(config['output_dir'], 'data_indices.json'), 'w') as f:
try:
json.dump({'train_indices': list(map(int, train_indices)),
'val_indices': list(map(int, val_indices)),
'test_indices': list(map(int, test_indices))}, f, indent=4)
except ValueError: # in case indices are non-integers
json.dump({'train_indices': list(train_original_data.shape[2]),
'val_indices': list(val_original_data.shape[2]),
'test_indices': list(test_original_data.shape[2])}, f, indent=4)
# loading Pre-Trained Model
model_dict = {'pro_len': config['prompting_length'], 'fore_len': config['forecasting_length'], 'ipt_len':config['input_length'],
'pre_train': False, 'dataset': config['dataset'],
'whether_prompt': config['ynprompt'], 'Pretrained_II': True, 'prompt_app': config['prompt_app'], 'former_pretrain': config['former_pretrain']}
logger.info("Creating model ...")
logger.info("The {} has been loader.".format(model_dict['prompt_app']))
if model_dict['whether_prompt'] == 'Normal_FL_Pretrain':
model_dict['Pretrained_II'] = False
model_dict['pre_train'] = True
logger.info("Staring Federated Pre-Train")
model = TSTransformerEncoder_Fed_Pre(feat_dim=feat_dim, max_len=config['input_length'] + config['forecasting_length'], d_model=config['d_model'], n_heads=config['num_heads'],
num_layers=config['num_layers'], dim_feedforward=config['dim_feedforward'], model_dict=model_dict).cuda()
model.train()
freezex(layer_name='Transformer_backbone', model=model)
# freezex(layer_name='Transformer_prompt_pre', model=model)
logger.info("Model:\n{}".format(model))
logger.info("Total number of parameters: {}".format(count_parameters(model)))
logger.info("Trainable parameters: {}".format(count_parameters(model, trainable=True)))
# Federated Setting
w_server, w_local = model.get_state()
w_server = [w_server] * config['clients']
w_local = [w_local] * config['clients']
global_model = deepcopy(w_server)
personalized_model = deepcopy(w_server)
server_state = None
# Tensorborad Staring
communication_board = SummaryWriter(config['tensorboard_dir'])
# Dataset Preparing
num_collaborator = max(int(config['client_frac'] * config['clients']), 1)
dict_user = data_split(config['nodes'], config['clients'])
fed_dict = {'lr': config['lr'], 'tensorboard_dir': config['tensorboard_dir'], 'batch_size': config['batch_size'],
'num_workers': config['num_workers'], 'device': "cuda", 'print_interval': config['print_interval'],
'console': config['console'], 'start_epoch': 0, 'epochs': config['epochs'], 'valid_fre': 5,
'masking_ratio': config['masking_ratio'], 'mean_mask_length': config['mean_mask_length'],
'input_len': config['input_length'], 'forecasting_len': config['forecasting_length'] ,
'prompt_len': config['prompting_length'], 'd_model': config['d_model'], 'dim_feedforward': config['dim_feedforward'],
'num_heads': config['num_heads'], 'num_layers': config['num_layers'], 'feat_dim': feat_dim}
agg_dict = {'agg_app': config['agg'], 'clients': config['clients'], 'sub_graph': config['clients'],
'serverlpha': 0.3, 'adjbeta': 0.7}
# Federated Learning Training
if model_dict['whether_prompt'] == 'Prompt_learning_interact' or model_dict['whether_prompt'] == 'normal_unsup' or model_dict['whether_prompt'] == "Novel_Prompting" or model_dict['whether_prompt'] == "Normal_Prompting":
logger.info('Dataset Remove')
train_set = val_set
train_indices = val_indices
val_set = test_set
val_indices = test_indices
balance_martix = torch.zeros(config['clients'], config['clients'])
for com in range(1, config['com_round'] + 1):
selected_user = np.random.choice(range(config['clients']), num_collaborator, replace=False)
train_time = []
train_loss = []
train_mae = []
train_rmse = []
client_recoder = []
for c in selected_user:
client_recoder.append(c)
engine = LocalClientUpdate(config, dict_user[c], train_set, train_indices,
val_set, val_indices, global_model[c], personalized_model[c],
w_local[c], {}, c, 0, config['local_mode_t'], server_state, mean, std, fed_dict, model_dict)
outputs = engine.run()
w_server[c] = deepcopy(outputs['params'][0])
w_local[c] = deepcopy(outputs['params'][1])
train_time.append(outputs["time"])
train_loss.append(outputs["loss"])
train_mae.append(outputs["mae"])
train_rmse.append(outputs['rmse'])
communication_board.add_scalar('Client_Training:{}'.format(c), train_mae[-1], com)
mtrain_time = np.mean(train_time)
mtrain_loss = np.mean(train_loss)
mtrain_mae = np.mean(train_mae)
mtrain_rmse = np.mean(train_rmse)
communication_board.add_scalar('Communication Round:{}'.format(com), mtrain_mae, com)
logger.info('Communication Round: {}, Train Loss: {},'\
' Train MSE/RMSE: {}, {}, Training Time: {}/com_round'.format(com, mtrain_loss, mtrain_mae, mtrain_rmse, mtrain_time))
logger.info('----- Staring Aggregation ------')
t1 = time.time()
personalized_model = parameter_aggregate(args, A, w_server, global_model, agg_dict, client_recoder, balance_martix)
t2 = time.time()
logger.info('Communication Round: {}, Aggregation Time: {}'.format(com, (t2 - t1)))
# global_model = personalized_model
global_model = read_out(personalized_model, "cuda")
logger.info('----- Staring validation round ------')
if com % fed_dict['valid_fre'] == 0:
all_vtime = []
all_vloss = []
all_vacc = []
all_vrmse = []
best_metrics = {'best_mae': 0, 'best_rmse': 0}
batch_time = []
batch_loss = []
batch_mae = []
batch_rmse = []
for c in range(config['clients']):
tengine = LocalClientUpdate(args, dict_user[c], [], [],
val_set, val_indices, personalized_model[c], personalized_model[c],
w_local[c], {}, c, 0, config['local_mode_v'], server_state, mean, std, fed_dict, model_dict=model_dict)
outputs = tengine.run()
batch_time.append(outputs["time"])
batch_loss.append(outputs["loss"])
batch_mae.append(outputs["mae"])
batch_rmse.append(outputs['rmse'])
communication_board.add_scalar('Client_Validation:{}'.format(c), train_mae[-1], c)
all_vtime.append(np.mean(batch_time))
all_vloss.append(np.mean(batch_loss))
all_vacc.append(np.mean(batch_mae))
all_vrmse.append(np.mean(batch_rmse))
logger.info('AllValidation Round: {}, Valid Loss: {}, ' \
'Valid MAE/RMSE: {},{}, Valid SD: {}, Test Time: {}/epoch'.
format(com, np.mean(all_vloss), np.mean(all_vacc), np.mean(all_vrmse), np.std(all_vacc),
np.mean(all_vtime)))
best_metrics['best_mae'], best_metrics['best_rmse'] = np.mean(all_vacc), np.mean(all_vrmse)
save_model(os.path.join(config['save_dir'], 'model_{}.pth'.format('best')), epoch=com, model = model, optimizer=None)
logger.info("Best Model has been saved ")
logger.info('Best MAE: {}, Best RMSE: {}'.format(best_metrics['best_mae'], best_metrics['best_rmse']))
if __name__ == "__main__":
args = Options().parse() # `argsparse` object
config = setup(args) # configuration dictionary
main(config)