-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathModel_QA.py
54 lines (31 loc) · 1.52 KB
/
Model_QA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from pinecone import Pinecone
import torch
from sentence_transformers import SentenceTransformer
from transformers import BartTokenizer, BartForConditionalGeneration
def answer(query):
context = query_pinecone(query, top_k=10)
query = format_query(query, context["matches"])
answer=generate_answer(query)
return answer
def query_pinecone(query, top_k):
xq = retriever.encode([query]).tolist()
xc = index.query(vector=xq, top_k=top_k, include_metadata=True)
return xc
def format_query(query, context):
context = [f"<P> {m['metadata']['Abstract']}" for m in context]
context = " ".join(context)
query = f"question: {query} context: {context}"
return query
def generate_answer(query):
inputs = tokenizer([query], max_length=1024, return_tensors="pt").to(device)
ids = generator.generate(inputs["input_ids"], num_beams=2, min_length=20, max_length=60)
answer = tokenizer.batch_decode(ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
return answer
api_key = '<Paste Pinecone API key here>'
pc = Pinecone(api_key=api_key)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
index_name = "hydro-question-answering"
index = pc.Index(index_name)
retriever = SentenceTransformer("flax-sentence-embeddings/all_datasets_v3_mpnet-base", device=device)
tokenizer = BartTokenizer.from_pretrained('vblagoje/bart_lfqa')
generator = BartForConditionalGeneration.from_pretrained('vblagoje/bart_lfqa').to(device)