forked from klauspost/reedsolomon
-
Notifications
You must be signed in to change notification settings - Fork 0
/
reedsolomon.go
1030 lines (925 loc) · 30.3 KB
/
reedsolomon.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**
* Reed-Solomon Coding over 8-bit values.
*
* Copyright 2015, Klaus Post
* Copyright 2015, Backblaze, Inc.
*/
// Package reedsolomon enables Erasure Coding in Go
//
// For usage and examples, see https://github.com/klauspost/reedsolomon
//
package reedsolomon
import (
"bytes"
"errors"
"io"
"runtime"
"sync"
"github.com/klauspost/cpuid/v2"
)
// Encoder is an interface to encode Reed-Salomon parity sets for your data.
type Encoder interface {
// Encode parity for a set of data shards.
// Input is 'shards' containing data shards followed by parity shards.
// The number of shards must match the number given to New().
// Each shard is a byte array, and they must all be the same size.
// The parity shards will always be overwritten and the data shards
// will remain the same, so it is safe for you to read from the
// data shards while this is running.
Encode(shards [][]byte) error
// Verify returns true if the parity shards contain correct data.
// The data is the same format as Encode. No data is modified, so
// you are allowed to read from data while this is running.
Verify(shards [][]byte) (bool, error)
// Reconstruct will recreate the missing shards if possible.
//
// Given a list of shards, some of which contain data, fills in the
// ones that don't have data.
//
// The length of the array must be equal to the total number of shards.
// You indicate that a shard is missing by setting it to nil or zero-length.
// If a shard is zero-length but has sufficient capacity, that memory will
// be used, otherwise a new []byte will be allocated.
//
// If there are too few shards to reconstruct the missing
// ones, ErrTooFewShards will be returned.
//
// The reconstructed shard set is complete, but integrity is not verified.
// Use the Verify function to check if data set is ok.
Reconstruct(shards [][]byte) error
// ReconstructData will recreate any missing data shards, if possible.
//
// Given a list of shards, some of which contain data, fills in the
// data shards that don't have data.
//
// The length of the array must be equal to Shards.
// You indicate that a shard is missing by setting it to nil or zero-length.
// If a shard is zero-length but has sufficient capacity, that memory will
// be used, otherwise a new []byte will be allocated.
//
// If there are too few shards to reconstruct the missing
// ones, ErrTooFewShards will be returned.
//
// As the reconstructed shard set may contain missing parity shards,
// calling the Verify function is likely to fail.
ReconstructData(shards [][]byte) error
// Update parity is use for change a few data shards and update it's parity.
// Input 'newDatashards' containing data shards changed.
// Input 'shards' containing old data shards (if data shard not changed, it can be nil) and old parity shards.
// new parity shards will in shards[DataShards:]
// Update is very useful if DataShards much larger than ParityShards and changed data shards is few. It will
// faster than Encode and not need read all data shards to encode.
Update(shards [][]byte, newDatashards [][]byte) error
// Split a data slice into the number of shards given to the encoder,
// and create empty parity shards.
//
// The data will be split into equally sized shards.
// If the data size isn't dividable by the number of shards,
// the last shard will contain extra zeros.
//
// There must be at least 1 byte otherwise ErrShortData will be
// returned.
//
// The data will not be copied, except for the last shard, so you
// should not modify the data of the input slice afterwards.
Split(data []byte) ([][]byte, error)
// Join the shards and write the data segment to dst.
//
// Only the data shards are considered.
// You must supply the exact output size you want.
// If there are to few shards given, ErrTooFewShards will be returned.
// If the total data size is less than outSize, ErrShortData will be returned.
Join(dst io.Writer, shards [][]byte, outSize int) error
}
// reedSolomon contains a matrix for a specific
// distribution of datashards and parity shards.
// Construct if using New()
type reedSolomon struct {
DataShards int // Number of data shards, should not be modified.
ParityShards int // Number of parity shards, should not be modified.
Shards int // Total number of shards. Calculated, and should not be modified.
m matrix
tree *inversionTree
parity [][]byte
o options
mPool sync.Pool
}
// ErrInvShardNum will be returned by New, if you attempt to create
// an Encoder with less than one data shard or less than zero parity
// shards.
var ErrInvShardNum = errors.New("cannot create Encoder with less than one data shard or less than zero parity shards")
// ErrMaxShardNum will be returned by New, if you attempt to create an
// Encoder where data and parity shards are bigger than the order of
// GF(2^8).
var ErrMaxShardNum = errors.New("cannot create Encoder with more than 256 data+parity shards")
// buildMatrix creates the matrix to use for encoding, given the
// number of data shards and the number of total shards.
//
// The top square of the matrix is guaranteed to be an identity
// matrix, which means that the data shards are unchanged after
// encoding.
func buildMatrix(dataShards, totalShards int) (matrix, error) {
// Start with a Vandermonde matrix. This matrix would work,
// in theory, but doesn't have the property that the data
// shards are unchanged after encoding.
vm, err := vandermonde(totalShards, dataShards)
if err != nil {
return nil, err
}
// Multiply by the inverse of the top square of the matrix.
// This will make the top square be the identity matrix, but
// preserve the property that any square subset of rows is
// invertible.
top, err := vm.SubMatrix(0, 0, dataShards, dataShards)
if err != nil {
return nil, err
}
topInv, err := top.Invert()
if err != nil {
return nil, err
}
return vm.Multiply(topInv)
}
// buildMatrixPAR1 creates the matrix to use for encoding according to
// the PARv1 spec, given the number of data shards and the number of
// total shards. Note that the method they use is buggy, and may lead
// to cases where recovery is impossible, even if there are enough
// parity shards.
//
// The top square of the matrix is guaranteed to be an identity
// matrix, which means that the data shards are unchanged after
// encoding.
func buildMatrixPAR1(dataShards, totalShards int) (matrix, error) {
result, err := newMatrix(totalShards, dataShards)
if err != nil {
return nil, err
}
for r, row := range result {
// The top portion of the matrix is the identity
// matrix, and the bottom is a transposed Vandermonde
// matrix starting at 1 instead of 0.
if r < dataShards {
result[r][r] = 1
} else {
for c := range row {
result[r][c] = galExp(byte(c+1), r-dataShards)
}
}
}
return result, nil
}
func buildMatrixCauchy(dataShards, totalShards int) (matrix, error) {
result, err := newMatrix(totalShards, dataShards)
if err != nil {
return nil, err
}
for r, row := range result {
// The top portion of the matrix is the identity
// matrix, and the bottom is a transposed Cauchy matrix.
if r < dataShards {
result[r][r] = 1
} else {
for c := range row {
result[r][c] = invTable[(byte(r ^ c))]
}
}
}
return result, nil
}
// buildXorMatrix can be used to build a matrix with pure XOR
// operations if there is only one parity shard.
func buildXorMatrix(dataShards, totalShards int) (matrix, error) {
if dataShards+1 != totalShards {
return nil, errors.New("internal error")
}
result, err := newMatrix(totalShards, dataShards)
if err != nil {
return nil, err
}
for r, row := range result {
// The top portion of the matrix is the identity
// matrix.
if r < dataShards {
result[r][r] = 1
} else {
// Set all values to 1 (XOR)
for c := range row {
result[r][c] = 1
}
}
}
return result, nil
}
// New creates a new encoder and initializes it to
// the number of data shards and parity shards that
// you want to use. You can reuse this encoder.
// Note that the maximum number of total shards is 256.
// If no options are supplied, default options are used.
func New(dataShards, parityShards int, opts ...Option) (Encoder, error) {
r := reedSolomon{
DataShards: dataShards,
ParityShards: parityShards,
Shards: dataShards + parityShards,
o: defaultOptions,
}
for _, opt := range opts {
opt(&r.o)
}
if dataShards <= 0 || parityShards < 0 {
return nil, ErrInvShardNum
}
if dataShards+parityShards > 256 {
return nil, ErrMaxShardNum
}
if parityShards == 0 {
return &r, nil
}
var err error
switch {
case r.o.fastOneParity && parityShards == 1:
r.m, err = buildXorMatrix(dataShards, r.Shards)
case r.o.useCauchy:
r.m, err = buildMatrixCauchy(dataShards, r.Shards)
case r.o.usePAR1Matrix:
r.m, err = buildMatrixPAR1(dataShards, r.Shards)
default:
r.m, err = buildMatrix(dataShards, r.Shards)
}
if err != nil {
return nil, err
}
// Calculate what we want per round
r.o.perRound = cpuid.CPU.Cache.L2
if r.o.perRound <= 0 {
// Set to 128K if undetectable.
r.o.perRound = 128 << 10
}
if cpuid.CPU.ThreadsPerCore > 1 && r.o.maxGoroutines > cpuid.CPU.PhysicalCores {
// If multiple threads per core, make sure they don't contend for cache.
r.o.perRound /= cpuid.CPU.ThreadsPerCore
}
// 1 input + parity must fit in cache, and we add one more to be safer.
r.o.perRound = r.o.perRound / (1 + parityShards)
// Align to 64 bytes.
r.o.perRound = ((r.o.perRound + 63) / 64) * 64
if r.o.minSplitSize <= 0 {
// Set minsplit as high as we can, but still have parity in L1.
cacheSize := cpuid.CPU.Cache.L1D
if cacheSize <= 0 {
cacheSize = 32 << 10
}
r.o.minSplitSize = cacheSize / (parityShards + 1)
// Min 1K
if r.o.minSplitSize < 1024 {
r.o.minSplitSize = 1024
}
}
if r.o.perRound < r.o.minSplitSize {
r.o.perRound = r.o.minSplitSize
}
if r.o.shardSize > 0 {
p := runtime.GOMAXPROCS(0)
if p == 1 || r.o.shardSize <= r.o.minSplitSize*2 {
// Not worth it.
r.o.maxGoroutines = 1
} else {
g := r.o.shardSize / r.o.perRound
// Overprovision by a factor of 2.
if g < p*2 && r.o.perRound > r.o.minSplitSize*2 {
g = p * 2
r.o.perRound /= 2
}
// Have g be multiple of p
g += p - 1
g -= g % p
r.o.maxGoroutines = g
}
}
// Inverted matrices are cached in a tree keyed by the indices
// of the invalid rows of the data to reconstruct.
// The inversion root node will have the identity matrix as
// its inversion matrix because it implies there are no errors
// with the original data.
if r.o.inversionCache {
r.tree = newInversionTree(dataShards, parityShards)
}
r.parity = make([][]byte, parityShards)
for i := range r.parity {
r.parity[i] = r.m[dataShards+i]
}
if avx2CodeGen && r.o.useAVX2 {
r.mPool.New = func() interface{} {
return make([]byte, r.Shards*2*32)
}
}
return &r, err
}
// ErrTooFewShards is returned if too few shards where given to
// Encode/Verify/Reconstruct/Update. It will also be returned from Reconstruct
// if there were too few shards to reconstruct the missing data.
var ErrTooFewShards = errors.New("too few shards given")
// Encodes parity for a set of data shards.
// An array 'shards' containing data shards followed by parity shards.
// The number of shards must match the number given to New.
// Each shard is a byte array, and they must all be the same size.
// The parity shards will always be overwritten and the data shards
// will remain the same.
func (r *reedSolomon) Encode(shards [][]byte) error {
if len(shards) != r.Shards {
return ErrTooFewShards
}
err := checkShards(shards, false)
if err != nil {
return err
}
// Get the slice of output buffers.
output := shards[r.DataShards:]
// Do the coding.
r.codeSomeShards(r.parity, shards[0:r.DataShards], output, r.ParityShards, len(shards[0]))
return nil
}
// ErrInvalidInput is returned if invalid input parameter of Update.
var ErrInvalidInput = errors.New("invalid input")
func (r *reedSolomon) Update(shards [][]byte, newDatashards [][]byte) error {
if len(shards) != r.Shards {
return ErrTooFewShards
}
if len(newDatashards) != r.DataShards {
return ErrTooFewShards
}
err := checkShards(shards, true)
if err != nil {
return err
}
err = checkShards(newDatashards, true)
if err != nil {
return err
}
for i := range newDatashards {
if newDatashards[i] != nil && shards[i] == nil {
return ErrInvalidInput
}
}
for _, p := range shards[r.DataShards:] {
if p == nil {
return ErrInvalidInput
}
}
shardSize := shardSize(shards)
// Get the slice of output buffers.
output := shards[r.DataShards:]
// Do the coding.
r.updateParityShards(r.parity, shards[0:r.DataShards], newDatashards[0:r.DataShards], output, r.ParityShards, shardSize)
return nil
}
func (r *reedSolomon) updateParityShards(matrixRows, oldinputs, newinputs, outputs [][]byte, outputCount, byteCount int) {
if len(outputs) == 0 {
return
}
if r.o.maxGoroutines > 1 && byteCount > r.o.minSplitSize {
r.updateParityShardsP(matrixRows, oldinputs, newinputs, outputs, outputCount, byteCount)
return
}
for c := 0; c < r.DataShards; c++ {
in := newinputs[c]
if in == nil {
continue
}
oldin := oldinputs[c]
// oldinputs data will be change
sliceXor(in, oldin, &r.o)
for iRow := 0; iRow < outputCount; iRow++ {
galMulSliceXor(matrixRows[iRow][c], oldin, outputs[iRow], &r.o)
}
}
}
func (r *reedSolomon) updateParityShardsP(matrixRows, oldinputs, newinputs, outputs [][]byte, outputCount, byteCount int) {
var wg sync.WaitGroup
do := byteCount / r.o.maxGoroutines
if do < r.o.minSplitSize {
do = r.o.minSplitSize
}
start := 0
for start < byteCount {
if start+do > byteCount {
do = byteCount - start
}
wg.Add(1)
go func(start, stop int) {
for c := 0; c < r.DataShards; c++ {
in := newinputs[c]
if in == nil {
continue
}
oldin := oldinputs[c]
// oldinputs data will be change
sliceXor(in[start:stop], oldin[start:stop], &r.o)
for iRow := 0; iRow < outputCount; iRow++ {
galMulSliceXor(matrixRows[iRow][c], oldin[start:stop], outputs[iRow][start:stop], &r.o)
}
}
wg.Done()
}(start, start+do)
start += do
}
wg.Wait()
}
// Verify returns true if the parity shards contain the right data.
// The data is the same format as Encode. No data is modified.
func (r *reedSolomon) Verify(shards [][]byte) (bool, error) {
if len(shards) != r.Shards {
return false, ErrTooFewShards
}
err := checkShards(shards, false)
if err != nil {
return false, err
}
// Slice of buffers being checked.
toCheck := shards[r.DataShards:]
// Do the checking.
return r.checkSomeShards(r.parity, shards[0:r.DataShards], toCheck, r.ParityShards, len(shards[0])), nil
}
// Multiplies a subset of rows from a coding matrix by a full set of
// input shards to produce some output shards.
// 'matrixRows' is The rows from the matrix to use.
// 'inputs' An array of byte arrays, each of which is one input shard.
// The number of inputs used is determined by the length of each matrix row.
// outputs Byte arrays where the computed shards are stored.
// The number of outputs computed, and the
// number of matrix rows used, is determined by
// outputCount, which is the number of outputs to compute.
func (r *reedSolomon) codeSomeShards(matrixRows, inputs, outputs [][]byte, outputCount, byteCount int) {
if len(outputs) == 0 {
return
}
switch {
case r.o.useAVX512 && r.o.maxGoroutines > 1 && byteCount > r.o.minSplitSize && len(inputs) >= 4 && len(outputs) >= 2:
r.codeSomeShardsAvx512P(matrixRows, inputs, outputs, outputCount, byteCount)
return
case r.o.useAVX512 && len(inputs) >= 4 && len(outputs) >= 2:
r.codeSomeShardsAvx512(matrixRows, inputs, outputs, outputCount, byteCount)
return
case r.o.maxGoroutines > 1 && byteCount > r.o.minSplitSize:
r.codeSomeShardsP(matrixRows, inputs, outputs, outputCount, byteCount)
return
}
// Process using no goroutines
start, end := 0, r.o.perRound
if end > len(inputs[0]) {
end = len(inputs[0])
}
if avx2CodeGen && r.o.useAVX2 && byteCount >= 32 && len(inputs)+len(outputs) >= 4 && len(inputs) <= maxAvx2Inputs && len(outputs) <= maxAvx2Outputs {
m := genAvx2Matrix(matrixRows, len(inputs), len(outputs), r.mPool.Get().([]byte))
start += galMulSlicesAvx2(m, inputs, outputs, 0, byteCount)
r.mPool.Put(m)
end = len(inputs[0])
}
for start < len(inputs[0]) {
for c := 0; c < r.DataShards; c++ {
in := inputs[c][start:end]
for iRow := 0; iRow < outputCount; iRow++ {
if c == 0 {
galMulSlice(matrixRows[iRow][c], in, outputs[iRow][start:end], &r.o)
} else {
galMulSliceXor(matrixRows[iRow][c], in, outputs[iRow][start:end], &r.o)
}
}
}
start = end
end += r.o.perRound
if end > len(inputs[0]) {
end = len(inputs[0])
}
}
}
// Perform the same as codeSomeShards, but split the workload into
// several goroutines.
func (r *reedSolomon) codeSomeShardsP(matrixRows, inputs, outputs [][]byte, outputCount, byteCount int) {
var wg sync.WaitGroup
gor := r.o.maxGoroutines
var avx2Matrix []byte
useAvx2 := avx2CodeGen && r.o.useAVX2 && byteCount >= 32 && len(inputs)+len(outputs) >= 4 && len(inputs) <= maxAvx2Inputs && len(outputs) <= maxAvx2Outputs
if useAvx2 {
avx2Matrix = genAvx2Matrix(matrixRows, len(inputs), len(outputs), r.mPool.Get().([]byte))
defer r.mPool.Put(avx2Matrix)
}
do := byteCount / gor
if do < r.o.minSplitSize {
do = r.o.minSplitSize
}
// Make sizes divisible by 64
do = (do + 63) & (^63)
start := 0
for start < byteCount {
if start+do > byteCount {
do = byteCount - start
}
wg.Add(1)
go func(start, stop int) {
if useAvx2 && stop-start >= 32 {
start += galMulSlicesAvx2(avx2Matrix, inputs, outputs, start, stop)
}
lstart, lstop := start, start+r.o.perRound
if lstop > stop {
lstop = stop
}
for lstart < stop {
for c := 0; c < r.DataShards; c++ {
in := inputs[c][lstart:lstop]
for iRow := 0; iRow < outputCount; iRow++ {
if c == 0 {
galMulSlice(matrixRows[iRow][c], in, outputs[iRow][lstart:lstop], &r.o)
} else {
galMulSliceXor(matrixRows[iRow][c], in, outputs[iRow][lstart:lstop], &r.o)
}
}
}
lstart = lstop
lstop += r.o.perRound
if lstop > stop {
lstop = stop
}
}
wg.Done()
}(start, start+do)
start += do
}
wg.Wait()
}
// checkSomeShards is mostly the same as codeSomeShards,
// except this will check values and return
// as soon as a difference is found.
func (r *reedSolomon) checkSomeShards(matrixRows, inputs, toCheck [][]byte, outputCount, byteCount int) bool {
if len(toCheck) == 0 {
return true
}
if r.o.maxGoroutines > 1 && byteCount > r.o.minSplitSize {
return r.checkSomeShardsP(matrixRows, inputs, toCheck, outputCount, byteCount)
}
outputs := make([][]byte, len(toCheck))
for i := range outputs {
outputs[i] = make([]byte, byteCount)
}
for c := 0; c < r.DataShards; c++ {
in := inputs[c]
for iRow := 0; iRow < outputCount; iRow++ {
galMulSliceXor(matrixRows[iRow][c], in, outputs[iRow], &r.o)
}
}
for i, calc := range outputs {
if !bytes.Equal(calc, toCheck[i]) {
return false
}
}
return true
}
func (r *reedSolomon) checkSomeShardsP(matrixRows, inputs, toCheck [][]byte, outputCount, byteCount int) bool {
same := true
var mu sync.RWMutex // For above
var wg sync.WaitGroup
do := byteCount / r.o.maxGoroutines
if do < r.o.minSplitSize {
do = r.o.minSplitSize
}
// Make sizes divisible by 64
do = (do + 63) & (^63)
start := 0
for start < byteCount {
if start+do > byteCount {
do = byteCount - start
}
wg.Add(1)
go func(start, do int) {
defer wg.Done()
outputs := make([][]byte, len(toCheck))
for i := range outputs {
outputs[i] = make([]byte, do)
}
for c := 0; c < r.DataShards; c++ {
mu.RLock()
if !same {
mu.RUnlock()
return
}
mu.RUnlock()
in := inputs[c][start : start+do]
for iRow := 0; iRow < outputCount; iRow++ {
galMulSliceXor(matrixRows[iRow][c], in, outputs[iRow], &r.o)
}
}
for i, calc := range outputs {
if !bytes.Equal(calc, toCheck[i][start:start+do]) {
mu.Lock()
same = false
mu.Unlock()
return
}
}
}(start, do)
start += do
}
wg.Wait()
return same
}
// ErrShardNoData will be returned if there are no shards,
// or if the length of all shards is zero.
var ErrShardNoData = errors.New("no shard data")
// ErrShardSize is returned if shard length isn't the same for all
// shards.
var ErrShardSize = errors.New("shard sizes do not match")
// checkShards will check if shards are the same size
// or 0, if allowed. An error is returned if this fails.
// An error is also returned if all shards are size 0.
func checkShards(shards [][]byte, nilok bool) error {
size := shardSize(shards)
if size == 0 {
return ErrShardNoData
}
for _, shard := range shards {
if len(shard) != size {
if len(shard) != 0 || !nilok {
return ErrShardSize
}
}
}
return nil
}
// shardSize return the size of a single shard.
// The first non-zero size is returned,
// or 0 if all shards are size 0.
func shardSize(shards [][]byte) int {
for _, shard := range shards {
if len(shard) != 0 {
return len(shard)
}
}
return 0
}
// Reconstruct will recreate the missing shards, if possible.
//
// Given a list of shards, some of which contain data, fills in the
// ones that don't have data.
//
// The length of the array must be equal to Shards.
// You indicate that a shard is missing by setting it to nil or zero-length.
// If a shard is zero-length but has sufficient capacity, that memory will
// be used, otherwise a new []byte will be allocated.
//
// If there are too few shards to reconstruct the missing
// ones, ErrTooFewShards will be returned.
//
// The reconstructed shard set is complete, but integrity is not verified.
// Use the Verify function to check if data set is ok.
func (r *reedSolomon) Reconstruct(shards [][]byte) error {
return r.reconstruct(shards, false)
}
// ReconstructData will recreate any missing data shards, if possible.
//
// Given a list of shards, some of which contain data, fills in the
// data shards that don't have data.
//
// The length of the array must be equal to Shards.
// You indicate that a shard is missing by setting it to nil or zero-length.
// If a shard is zero-length but has sufficient capacity, that memory will
// be used, otherwise a new []byte will be allocated.
//
// If there are too few shards to reconstruct the missing
// ones, ErrTooFewShards will be returned.
//
// As the reconstructed shard set may contain missing parity shards,
// calling the Verify function is likely to fail.
func (r *reedSolomon) ReconstructData(shards [][]byte) error {
return r.reconstruct(shards, true)
}
// reconstruct will recreate the missing data shards, and unless
// dataOnly is true, also the missing parity shards
//
// The length of the array must be equal to Shards.
// You indicate that a shard is missing by setting it to nil.
//
// If there are too few shards to reconstruct the missing
// ones, ErrTooFewShards will be returned.
func (r *reedSolomon) reconstruct(shards [][]byte, dataOnly bool) error {
if len(shards) != r.Shards {
return ErrTooFewShards
}
// Check arguments.
err := checkShards(shards, true)
if err != nil {
return err
}
shardSize := shardSize(shards)
// Quick check: are all of the shards present? If so, there's
// nothing to do.
numberPresent := 0
dataPresent := 0
for i := 0; i < r.Shards; i++ {
if len(shards[i]) != 0 {
numberPresent++
if i < r.DataShards {
dataPresent++
}
}
}
if numberPresent == r.Shards || dataOnly && dataPresent == r.DataShards {
// Cool. All of the shards data data. We don't
// need to do anything.
return nil
}
// More complete sanity check
if numberPresent < r.DataShards {
return ErrTooFewShards
}
// Pull out an array holding just the shards that
// correspond to the rows of the submatrix. These shards
// will be the input to the decoding process that re-creates
// the missing data shards.
//
// Also, create an array of indices of the valid rows we do have
// and the invalid rows we don't have up until we have enough valid rows.
subShards := make([][]byte, r.DataShards)
validIndices := make([]int, r.DataShards)
invalidIndices := make([]int, 0)
subMatrixRow := 0
for matrixRow := 0; matrixRow < r.Shards && subMatrixRow < r.DataShards; matrixRow++ {
if len(shards[matrixRow]) != 0 {
subShards[subMatrixRow] = shards[matrixRow]
validIndices[subMatrixRow] = matrixRow
subMatrixRow++
} else {
invalidIndices = append(invalidIndices, matrixRow)
}
}
// Attempt to get the cached inverted matrix out of the tree
// based on the indices of the invalid rows.
dataDecodeMatrix := r.tree.GetInvertedMatrix(invalidIndices)
// If the inverted matrix isn't cached in the tree yet we must
// construct it ourselves and insert it into the tree for the
// future. In this way the inversion tree is lazily loaded.
if dataDecodeMatrix == nil {
// Pull out the rows of the matrix that correspond to the
// shards that we have and build a square matrix. This
// matrix could be used to generate the shards that we have
// from the original data.
subMatrix, _ := newMatrix(r.DataShards, r.DataShards)
for subMatrixRow, validIndex := range validIndices {
for c := 0; c < r.DataShards; c++ {
subMatrix[subMatrixRow][c] = r.m[validIndex][c]
}
}
// Invert the matrix, so we can go from the encoded shards
// back to the original data. Then pull out the row that
// generates the shard that we want to decode. Note that
// since this matrix maps back to the original data, it can
// be used to create a data shard, but not a parity shard.
dataDecodeMatrix, err = subMatrix.Invert()
if err != nil {
return err
}
// Cache the inverted matrix in the tree for future use keyed on the
// indices of the invalid rows.
err = r.tree.InsertInvertedMatrix(invalidIndices, dataDecodeMatrix, r.Shards)
if err != nil {
return err
}
}
// Re-create any data shards that were missing.
//
// The input to the coding is all of the shards we actually
// have, and the output is the missing data shards. The computation
// is done using the special decode matrix we just built.
outputs := make([][]byte, r.ParityShards)
matrixRows := make([][]byte, r.ParityShards)
outputCount := 0
for iShard := 0; iShard < r.DataShards; iShard++ {
if len(shards[iShard]) == 0 {
if cap(shards[iShard]) >= shardSize {
shards[iShard] = shards[iShard][0:shardSize]
} else {
shards[iShard] = make([]byte, shardSize)
}
outputs[outputCount] = shards[iShard]
matrixRows[outputCount] = dataDecodeMatrix[iShard]
outputCount++
}
}
r.codeSomeShards(matrixRows, subShards, outputs[:outputCount], outputCount, shardSize)
if dataOnly {
// Exit out early if we are only interested in the data shards
return nil
}
// Now that we have all of the data shards intact, we can
// compute any of the parity that is missing.
//
// The input to the coding is ALL of the data shards, including
// any that we just calculated. The output is whichever of the
// data shards were missing.
outputCount = 0
for iShard := r.DataShards; iShard < r.Shards; iShard++ {
if len(shards[iShard]) == 0 {
if cap(shards[iShard]) >= shardSize {
shards[iShard] = shards[iShard][0:shardSize]
} else {
shards[iShard] = make([]byte, shardSize)
}
outputs[outputCount] = shards[iShard]
matrixRows[outputCount] = r.parity[iShard-r.DataShards]
outputCount++
}
}
r.codeSomeShards(matrixRows, shards[:r.DataShards], outputs[:outputCount], outputCount, shardSize)
return nil
}
// ErrShortData will be returned by Split(), if there isn't enough data
// to fill the number of shards.
var ErrShortData = errors.New("not enough data to fill the number of requested shards")
// Split a data slice into the number of shards given to the encoder,
// and create empty parity shards if necessary.
//
// The data will be split into equally sized shards.
// If the data size isn't divisible by the number of shards,
// the last shard will contain extra zeros.
//
// There must be at least 1 byte otherwise ErrShortData will be
// returned.
//
// The data will not be copied, except for the last shard, so you
// should not modify the data of the input slice afterwards.
func (r *reedSolomon) Split(data []byte) ([][]byte, error) {
if len(data) == 0 {
return nil, ErrShortData
}
// Calculate number of bytes per data shard.
perShard := (len(data) + r.DataShards - 1) / r.DataShards
if cap(data) > len(data) {
data = data[:cap(data)]
}
// Only allocate memory if necessary
var padding []byte
if len(data) < (r.Shards * perShard) {
// calculate maximum number of full shards in `data` slice
fullShards := len(data) / perShard
padding = make([]byte, r.Shards*perShard-perShard*fullShards)
copy(padding, data[perShard*fullShards:])
data = data[0 : perShard*fullShards]
}
// Split into equal-length shards.
dst := make([][]byte, r.Shards)
i := 0
for ; i < len(dst) && len(data) >= perShard; i++ {
dst[i] = data[:perShard:perShard]
data = data[perShard:]
}
for j := 0; i+j < len(dst); j++ {
dst[i+j] = padding[:perShard:perShard]
padding = padding[perShard:]
}
return dst, nil
}
// ErrReconstructRequired is returned if too few data shards are intact and a
// reconstruction is required before you can successfully join the shards.
var ErrReconstructRequired = errors.New("reconstruction required as one or more required data shards are nil")
// Join the shards and write the data segment to dst.
//
// Only the data shards are considered.
// You must supply the exact output size you want.
//
// If there are to few shards given, ErrTooFewShards will be returned.
// If the total data size is less than outSize, ErrShortData will be returned.
// If one or more required data shards are nil, ErrReconstructRequired will be returned.
func (r *reedSolomon) Join(dst io.Writer, shards [][]byte, outSize int) error {
// Do we have enough shards?
if len(shards) < r.DataShards {
return ErrTooFewShards
}
shards = shards[:r.DataShards]
// Do we have enough data?
size := 0