-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathmodel.py
251 lines (204 loc) · 9.79 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import os
import tokenizers
import ctranslate2
import numpy as np
from .tokenizer import Tokenizer
from .hf_utils import download_model
from .. import WhisperModel
from ...configs import *
FAST_ASR_OPTIONS = {
"beam_size": 1,
"best_of": 1, # Placeholder
"patience": 1,
"length_penalty": 1,
"repetition_penalty": 1.01,
"no_repeat_ngram_size": 0,
"compression_ratio_threshold": 2.4, # Placeholder
"log_prob_threshold": -1.0, # Placeholder
"no_speech_threshold": 0.5, # Placeholder
"prefix": None, # Placeholder
"suppress_blank": True,
"suppress_tokens": [-1],
"without_timestamps": True,
"max_initial_timestamp": 1.0,
"word_timestamps": False, # Placeholder
"sampling_temperature": 1.0,
"return_scores": True,
"return_no_speech_prob": True,
"word_aligner_model": 'tiny',
}
BEST_ASR_CONFIG = {
"beam_size": 5,
"best_of": 1, # Placeholder
"patience": 2,
"length_penalty": 1,
"repetition_penalty": 1.01,
"no_repeat_ngram_size": 0,
"compression_ratio_threshold": 2.4, # Placeholder
"log_prob_threshold": -1.0, # Placeholder
"no_speech_threshold": 0.5, # Placeholder
"prefix": None, # Placeholder
"suppress_blank": True,
"suppress_tokens": [-1],
"without_timestamps": True,
"max_initial_timestamp": 1.0,
"word_timestamps": False, # Placeholder
"sampling_temperature": 1.0,
"return_scores": True,
"return_no_speech_prob": True,
"word_aligner_model": 'tiny',
}
class WhisperModelCT2(WhisperModel):
def __init__(self,
model_name_or_path: str,
cpu_threads=4,
num_workers=1,
device="cuda",
device_index=0,
compute_type="float16",
max_text_token_len=MAX_TEXT_TOKEN_LENGTH,
asr_options={},
**model_kwargs):
# Get local model path or download from huggingface
if os.path.isdir(model_name_or_path):
self.model_path = model_name_or_path
else:
self.model_path = download_model(model_name_or_path)
# Load model
self.model = ctranslate2.models.Whisper(self.model_path,
device=device,
device_index=device_index,
compute_type=compute_type,
intra_threads=cpu_threads,
inter_threads=num_workers)
# Load tokenizer
tokenizer_file = os.path.join(self.model_path, "tokenizer.json")
tokenizer = Tokenizer(tokenizers.Tokenizer.from_file(tokenizer_file), self.model.is_multilingual)
# ASR Options
self.asr_options = FAST_ASR_OPTIONS
self.asr_options.update(asr_options)
if self.asr_options['word_timestamps']:
self.aligner_model_path = download_model(self.asr_options['word_aligner_model'])
self.aligner_model = ctranslate2.models.Whisper(self.aligner_model_path,
device=device,
device_index=device_index,
compute_type=compute_type,
intra_threads=cpu_threads,
inter_threads=num_workers)
self.generate_kwargs = {
"max_length": max_text_token_len,
"return_scores": self.asr_options['return_scores'],
"return_no_speech_prob": self.asr_options['return_no_speech_prob'],
"length_penalty": self.asr_options['length_penalty'],
"repetition_penalty": self.asr_options['repetition_penalty'],
"no_repeat_ngram_size": self.asr_options['no_repeat_ngram_size'],
"beam_size": self.asr_options['beam_size'],
"patience": self.asr_options['patience'],
"suppress_blank": self.asr_options['suppress_blank'],
"suppress_tokens": self.asr_options['suppress_tokens'],
"max_initial_timestamp_index": int(round(self.asr_options['max_initial_timestamp']/TIME_PRECISION)),
"sampling_temperature": self.asr_options['sampling_temperature'],
}
super().__init__(
tokenizer=tokenizer,
device=device,
device_index=device_index,
compute_type=compute_type,
max_text_token_len=max_text_token_len,
**model_kwargs
)
def update_generation_kwargs(self, params={}):
self.generate_kwargs.update(params)
if 'max_text_token_len' in params:
self.update_params(params={'max_text_token_len': params['max_text_token_len']})
def encode(self, features):
"""
[Not Used]
"""
features = ctranslate2.StorageView.from_array(features.contiguous())
return self.model.encode(features)
def assign_word_timings(self, alignments, text_token_probs, words, word_tokens):
text_indices = np.array([pair[0] for pair in alignments])
time_indices = np.array([pair[1] for pair in alignments])
if len(word_tokens) <= 1:
return []
word_boundaries = np.pad(np.cumsum([len(t) for t in word_tokens[:-1]]), (1, 0))
if len(word_boundaries) <= 1:
return []
jumps = np.pad(np.diff(text_indices), (1, 0), constant_values=1).astype(bool)
jump_times = time_indices[jumps]*TIME_PRECISION
start_times = jump_times[word_boundaries[:-1]]
end_times = jump_times[word_boundaries[1:]]
word_probs = [
np.mean(text_token_probs[i:j])
for i, j in zip(word_boundaries[:-1], word_boundaries[1:])
]
return [
dict(
word=word, start=round(start, 2), end=round(end, 2), prob=round(prob, 2)
)
for word, start, end, prob in zip(
words, start_times, end_times, word_probs
)
]
def align_words(self, features, texts, text_tokens, sot_seqs, seq_lens, seg_metadata):
lang_codes = [_['lang_code'] for _ in seg_metadata]
word_tokens = self.tokenizer.split_to_word_tokens_batch(texts, text_tokens, lang_codes)
start_seq_wise_req = {}
for _idx, _sot_seq in enumerate(sot_seqs):
try:
# print(_sot_seq)
start_seq_wise_req[_sot_seq].append(_idx)
except:
start_seq_wise_req[_sot_seq] = [_idx]
token_alignments = [[] for _ in seg_metadata]
for start_seq, req_idx in start_seq_wise_req.items():
res = self.aligner_model.align(ctranslate2.StorageView.from_array(features[req_idx]),
start_sequence=list(start_seq),
text_tokens=[text_tokens[_] for _ in req_idx],
num_frames=list(seq_lens[req_idx].detach().cpu().numpy()),
median_filter_width=7)
for _res, _req_idx in zip(res, req_idx):
token_alignments[_req_idx] = _res
word_timings = []
for _idx, _seg_metadata in enumerate(seg_metadata):
_word_timings = self.assign_word_timings(token_alignments[_idx].alignments,
token_alignments[_idx].text_token_probs,
word_tokens[_idx][0],
word_tokens[_idx][1])
stitched_seg = _seg_metadata['stitched_seg']
current_seg_idx = 0
current_offset = _seg_metadata['start_time']
for w in _word_timings:
while (w['start'] + current_offset) >= stitched_seg[current_seg_idx][1]:
current_seg_idx += 1
current_offset += (stitched_seg[current_seg_idx][0]-stitched_seg[current_seg_idx-1][1])
w['start'] += current_offset
w['end'] += current_offset
word_timings.append(_word_timings)
return word_timings
def generate_segment_batched(self, features, prompts, seq_lens, seg_metadata):
if self.device == 'cpu':
features = np.ascontiguousarray(features.detach().numpy())
else:
features = features.contiguous()
result = self.model.generate(ctranslate2.StorageView.from_array(features),
prompts,
**self.generate_kwargs)
texts = self.tokenizer.decode_batch([x.sequences_ids[0] for x in result])
response = []
for idx, r in enumerate(result):
response.append({'text': texts[idx].strip()})
if self.generate_kwargs['return_scores']:
seq_len = len(r.sequences_ids[0])
cum_logprob = r.scores[0]*(seq_len**self.generate_kwargs['length_penalty'])
response[-1]['avg_logprob'] = cum_logprob/(seq_len + 1)
if self.generate_kwargs['return_no_speech_prob']:
response[-1]['no_speech_prob'] = r.no_speech_prob
if self.asr_options['word_timestamps']:
text_tokens = [x.sequences_ids[0]+[self.tokenizer.eot] for x in result]
sot_seqs = [tuple(_[-4:]) for _ in prompts]
word_timings = self.align_words(features, texts, text_tokens, sot_seqs, seq_lens, seg_metadata)
for _response, _word_timings in zip(response, word_timings):
_response['word_timestamps'] = _word_timings
return response