-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathtest_final.py
581 lines (355 loc) · 14.4 KB
/
test_final.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
import numpy as np
import time
import rospy
from nav_msgs.msg import OccupancyGrid
from std_msgs.msg import Float32
import matplotlib.pyplot as plt
# Vehicle Parameters
from visualization_msgs.msg import Marker
from visualization_msgs.msg import MarkerArray
from geometry_msgs.msg import Quaternion, Pose, Point, Vector3
from std_msgs.msg import Header, ColorRGBA
SPEED = 1.4
LENGTH = 1.5
vehicle_points = np.array([[-1.1, 2],[0, 2],[1.1, 2],[-1.1, 0],[0, 0],[1.1,0],[-1.1, -2],[0, -2],[1.1, -2]])
max_angle = 0.785398
min_angle = -0.785398
### State Model
class state:
def __init__(self, x, y, theta, g,f,h, steer):
self.x = x
self.y = y
self.theta = theta
self.g = g
self.f = f
self.h = h
self.steer = steer
### State Transition
def transition(v_state, delta, dt, goal):
# ---Begin Vehicle model---
omega = SPEED/LENGTH * np.tan(delta)
d_x = SPEED * np.cos(v_state.theta) * dt
d_y = SPEED * np.sin(v_state.theta) * dt
next_x = v_state.x + d_x
next_y = v_state.y + d_y
next_theta = normalize(v_state.theta + (omega*dt))
# ---End Vehicle model---
next_g = v_state.g + np.sqrt( d_x * d_x + d_y * d_y )
next_h = heuristic(next_x, next_y, goal)
next_f = next_g + next_h + np.abs(delta) * 0.1
next_steer = delta
# Create a new State object with all of the "next" values.
new_state = state(next_x, next_y, next_theta, next_g, next_f, next_h, next_steer)
return new_state
### Grid Resolution
grid_x_m = 40
grid_y_m = 40
coll_cell_side = 0.5
grid_coll_x = np.int( np.ceil(grid_x_m/coll_cell_side) )
grid_coll_y = np.int( np.ceil(grid_y_m/coll_cell_side) )
grid = np.zeros((grid_coll_x,grid_coll_y), np.int)
cell_side = 1.0
x_offset = (grid.shape[1]*coll_cell_side)/2
y_offset = (grid.shape[0]*coll_cell_side)/2
### Grid with Obstacles
### A Class to store every state and the index
class link:
def __init__(self, inp_state, inp_index):
self.state = inp_state
self.index = inp_index
### Start And Goal
class start:
def __init__(self, x, y, theta):
self.x = x
self.y = y
self.theta = theta
class goal:
def __init__(self, x, y):
self.x = x
self.y = y
### Helper Functions
def heuristic(x,y,goal):
distance = np.sqrt( ((x-goal.x)**2) + ((y-goal.y)**2) )
return distance
def normalize(theta):
if theta < 0:
theta = theta + 2.0 * np.pi
return theta
if theta > 2*np.pi:
theta = theta - 2.0 * np.pi
return theta
else:
return theta
def rotation(w,t):
y = np.array([[np.cos(t), np.sin(t)], [-np.sin(t), np.cos(t)]])
return np.matmul(w, y)
def transformation(w, x, y,t):
p = np.zeros_like(w)
for i in range(p.shape[0]):
p[i][0:2] = w[i][0:2]+[x,y]
return rotation(p,(t-np.pi/2))
#def get_grid_coordinates(x, y):
#x = x+x_offset
#y = y+y_offset
#cell_x = np.floor(x/cell_side)
#cell_y = np.floor(y/cell_side)
#grid[cell_y, cell_x] = 2
#return cell_x, cell_y
def check_occupancy(x, y):
x = x+x_offset
y = y+y_offset
cell_x = np.floor(x/coll_cell_side)
cell_y = np.floor(y/coll_cell_side)
#grid[cell_y, cell_x] = 2
return grid[int(cell_y), int(cell_x)]
def delta_t(delta, n, off):
delta_list = []
delta_list.append(delta)
delta_calc = delta
for i in range(0 ,n):
delta_calc += off
if delta_calc < max_angle:
delta_list.append(delta_calc)
delta_calc = delta
for i in range(0 ,n):
delta_calc -= off
if min_angle < delta_calc:
delta_list.append(delta_calc)
return delta_list
def checkLimits( x,y ):
result = True
if ( x < -grid_x_m/2 ) | ( y < -grid_y_m/2 ) | ( x > grid_x_m/2 ) | ( y > grid_y_m/2 ):
result = False
return result
state_cell_side = 1.0
grid_state_x = np.int( np.ceil(grid_x_m/state_cell_side) )
grid_state_y = np.int( np.ceil(grid_y_m/state_cell_side) )
NUM_THETA_CELLS = 360
x_state_offset = grid_x_m/2.0
y_state_offset = grid_y_m/2.0
def check_closed(x, y, theta):
x = x + x_state_offset
y = y + y_state_offset
cell_x = np.floor(x/state_cell_side)
cell_y = np.floor(y/state_cell_side)
cell_theta = np.floor( theta * NUM_THETA_CELLS / (2.0 * np.pi) )
return closed[int(cell_theta)][int(cell_y)][int(cell_x)]
def set_closed(x, y, theta):
x = x + x_state_offset
y = y + y_state_offset
cell_x = np.floor(x/state_cell_side)
cell_y = np.floor(y/state_cell_side)
cell_theta = np.floor( theta * NUM_THETA_CELLS / (2.0 * np.pi) )
closed[int(cell_theta)][int(cell_y)][int(cell_x)] = 1
current_state = state(0.0, 0.0, np.pi/2, 0.0, 0.0, 0.0, 0.0)
new_points = np.copy(vehicle_points)
#print(new_points)
Goal = goal( -200.0, 0.0 )
closed = [[[0 for x in range(grid_state_x)] for y in range(grid_state_y)] for cell in range(NUM_THETA_CELLS)]
path_state = current_state
open_list = []
path_link = link( path_state, 0 )
open_list.append( path_link )
trace_list = []
trace_link = link( path_state, -1 )
trace_list.append( trace_link )
path_x = []
path_y = []
path_h = []
path_x.append( current_state.x )
path_y.append( current_state.y )
def search():
topic = 'visualization_marker_array'
publisher = rospy.Publisher(topic, MarkerArray, queue_size=100)
markerArray = MarkerArray()
goal_reached = 0
grid_goal = 0
counter = 0
time_out = 45000
low_h = 0
low_index = 0
for count in range(2):
#start = time.time()
while ( len(open_list) > 0 ) & (goal_reached == 0) & (counter<time_out) & (grid_goal ==0 ):
counter+=1
open_list.sort( key=lambda ste:ste.state.f )
path_link = open_list.pop(0)
path_state = path_link.state
path_index = path_link.index
# print( "" )
#print( "Best path")
#print( path_state.x, path_state.y, path_state.theta, path_state.f )
path_x.append( path_state.x )
path_y.append( path_state.y )
#exit = 0
#while exit == 0:
delta_angle = delta_t( path_state.steer, 4, 0.0872665 )
#delta_angle = [ 30 * np.pi / 180, 60 * np.pi / 180, 0, -60 * np.pi / 180, -30 * np.pi / 180 ]
#print( delta_angle )
state_list = []
for i in range(len(delta_angle)):
new_state = transition( path_state, delta_angle[i], 0.1, Goal)
#print( new_state.x, new_state.y, new_state.theta )
if checkLimits( new_state.x , new_state.y ) == True:
if check_closed( new_state.x, new_state.y, new_state.theta ) == 0:
state_list.append(new_state)
set_closed( new_state.x, new_state.y, new_state.theta )
else:
X = Goal.x-new_state.x
Y = Goal.y-new_state.y
angleInRadian = np.arctan2(Y,X)
diff_theta = np.abs(angleInRadian - new_state.theta)
#print(diff_theta)
if diff_theta< 0.523599:
grid_goal = 1
break
if grid_goal == 1 :
break
collision_free = []
for i in range(len(state_list)):
check = 0
new_points = transformation(vehicle_points, state_list[i].x, state_list[i].y, state_list[i].theta)
#new_points = [ [ state_list[i].x, state_list[i].y ] ]
for point in new_points :
if checkLimits(point[0],point[1]) == True:
#get_x, get_y = get_grid_coordinates(point[0], point[1])
check = check_occupancy(point[0], point[1])
else :
X = Goal.x-state_list[i].x
Y = Goal.y-state_list[i].y
angleInRadian = np.arctan2(Y,X)
diff_theta = np.abs(angleInRadian - state_list[i].theta)
print(diff_theta)
if diff_theta< 0.523599:
grid_goal = 1
break
check =1
if check == 1:
break
if check == 0:
collision_free.append(state_list[i])
if( collision_free ):
for nstate in collision_free:
#print( nstate.x, nstate.y, nstate.theta )
new_link = link( nstate, len(trace_list) )
open_list.append( new_link )
trace_link = link( nstate, path_index )
trace_list.append( trace_link )
if (low_h == 0) :
low_h = nstate.h
low_index = len(trace_list) - 1
elif low_h > nstate.h:
low_h = nstate.h
low_index = len(trace_list) - 1
if np.sqrt((nstate.x - Goal.x)**2 + (nstate.y - Goal.y)**2) < 0.5:
goal_reached = 1
path_x.append( nstate.x )
path_y.append( nstate.y )
print( "goal")
#end = time.time()
#print("Process Time", end - start)
#print(len(trace_list))
if goal_reached == 1 :
fpath_x = []
fpath_y = []
fpath_steer = []
curr_trace = trace_list[-1]
while( curr_trace.index != -1 ):
fpath_x.append( curr_trace.state.x )
fpath_y.append( curr_trace.state.y )
fpath_steer.append( curr_trace.state.steer )
curr_trace = trace_list[ curr_trace.index ]
plt.scatter( fpath_x, fpath_y)
#print(fpath_x[-2], fpath_y[-2])
#end = time.time()
#print("Process Time", end - start)
plt.axis( 'equal' )
#plt.show()
plt.savefig('path.png')
print(fpath_steer[-2])
#return fpath_steer[-2]
if (goal_reached == 0) & (grid_goal ==0 ) :
fpath_x = []
fpath_y = []
fpath_steer = []
print("low_index:",low_index)
curr_trace = trace_list[low_index]
while( curr_trace.index != -1 ):
fpath_x.append( curr_trace.state.x )
fpath_y.append( curr_trace.state.y )
fpath_steer.append( curr_trace.state.steer )
curr_trace = trace_list[ curr_trace.index ]
plt.scatter( fpath_x, fpath_y)
#print(fpath_x[-2], fpath_y[-2])
plt.axis( 'equal' )
#plt.show()
plt.savefig('path.png')
print(fpath_steer[-2])
#return fpath_steer[-2]
if grid_goal == 1:
#print("here")
fpath_x = []
fpath_y = []
fpath_steer = []
curr_trace = trace_list[path_index]
while( curr_trace.index != -1 ):
fpath_x.append( curr_trace.state.x )
fpath_y.append( curr_trace.state.y )
fpath_steer.append( curr_trace.state.steer )
next_trace = curr_trace
curr_trace = trace_list[ curr_trace.index ]
plt.scatter( fpath_x, fpath_y )
print(fpath_steer[-2])
#end = time.time()
#print("Process Time", end - start)
plt.axis( 'equal' )
#plt.show()
plt.savefig('path.png')
#return fpath_steer[-2]
for i in range( len(fpath_x) ):
marker = Marker()
marker.header.frame_id = "/neck"
marker.id = i
marker.type = marker.SPHERE
marker.action = marker.ADD
marker.scale.x = 0.2
marker.scale.y = 0.2
marker.scale.z = 0.2
marker.color.a = 1.0
marker.color.r = 1.0
marker.color.g = 1.0
marker.color.b = 0.0
#marker.lifetime = rospy.Duration(0.5)
marker.pose.orientation.w = 1.0
marker.pose.position.x = fpath_x[i] + x_offset
marker.pose.position.y = fpath_y[i] + y_offset
marker.pose.position.z = 2
markerArray.markers.append(marker)
publisher.publish(markerArray)
return fpath_steer[-2]
def steerCallback(msg):
current_state.steer = msg.data
def callback(msg):
global grid
for i in range(grid.shape[0]):
for j in range(grid.shape[1]):
grid[j,i] = msg.data[ grid.shape[0] * i + j ]
#print(grid_data)
f = open( "grid.csv", "w" )
for i in range(grid.shape[0]):
for j in range(grid.shape[1]):
f.write( np.str( grid[i][j] ) )
f.write( ", " )
f.write( "\n" )
f.close()
coll_cell_side = msg.info.resolution
search_service()
def listener():
rospy.Subscriber( "obstacle_grid", OccupancyGrid, callback, queue_size=1 )
rospy.Subscriber( "/currentSteerAngle", Float32, steerCallback )
rospy.spin()
def search_service():
print( "Steer : ", search() )
if __name__== "__main__":
rospy.init_node( 'astar', anonymous=True)
listener()