-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultihead_attention3.py
1017 lines (962 loc) · 40.3 KB
/
multihead_attention3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3
# Author: Duo MA
# Email: [email protected]
## this file is from flash-attention/flash_attn/modules/mha.py
import math
from functools import partial
import torch
import torch.nn as nn
from einops import rearrange, repeat
import warnings
try:
from flash_attn.utils.distributed import get_dim_for_local_rank
except:
warnings.warn(
"""
you need to install flash_attn package following the command:
pip install flash-attn --no-build-isolation
"""
)
try:
from flash_attn import (
flash_attn_kvpacked_func,
flash_attn_qkvpacked_func,
flash_attn_varlen_kvpacked_func,
flash_attn_varlen_qkvpacked_func,
)
except ImportError:
flash_attn_varlen_qkvpacked_func, flash_attn_varlen_kvpacked_func = None, None
flash_attn_qkvpacked_func, flash_attn_kvpacked_func = None, None
try:
from flash_attn.ops.fused_dense import (
ColumnParallelLinear,
FusedDense,
RowParallelLinear,
)
except ImportError:
FusedDense, ColumnParallelLinear, RowParallelLinear = None, None, None
try:
from flash_attn.layers.rotary import RotaryEmbedding
except ImportError:
RotaryEmbedding = None
try:
import ft_attention
except ImportError:
ft_attention = None
class FlashSelfAttention(nn.Module):
"""Implement the scaled dot product attention with softmax.
Arguments
---------
softmax_scale: The temperature to use for the softmax attention.
(default: 1/sqrt(d_keys) where d_keys is computed at
runtime)
attention_dropout: The dropout rate to apply to the attention
(default: 0.0)
"""
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
super().__init__()
assert (
flash_attn_varlen_qkvpacked_func is not None
), "FlashAttention is not installed"
assert flash_attn_qkvpacked_func is not None, "FlashAttention is not installed"
self.causal = causal
self.softmax_scale = softmax_scale
self.drop = nn.Dropout(attention_dropout)
def forward(self, qkv, causal=None, cu_seqlens=None, max_seqlen=None):
"""Implements the multihead softmax attention.
Arguments
---------
qkv: The tensor containing the query, key, and value.
If cu_seqlens is None and max_seqlen is None, then qkv has shape (B, S, 3, H, D).
If cu_seqlens is not None and max_seqlen is not None, then qkv has shape
(total, 3, H, D), where total is the sum of the sequence lengths in the batch.
causal: if passed, will override self.causal
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
of the sequences in the batch, used to index into qkv.
max_seqlen: int. Maximum sequence length in the batch.
Returns:
--------
out: (total, H, D) if cu_seqlens is not None and max_seqlen is not None,
else (B, S, H, D).
"""
assert qkv.dtype in [torch.float16, torch.bfloat16]
assert qkv.is_cuda
causal = self.causal if causal is None else causal
unpadded = cu_seqlens is not None
if unpadded:
assert cu_seqlens.dtype == torch.int32
assert max_seqlen is not None
assert isinstance(max_seqlen, int)
return flash_attn_varlen_qkvpacked_func(
qkv,
cu_seqlens,
max_seqlen,
self.drop.p if self.training else 0.0,
softmax_scale=self.softmax_scale,
causal=causal,
)
else:
return flash_attn_qkvpacked_func(
qkv,
self.drop.p if self.training else 0.0,
softmax_scale=self.softmax_scale,
causal=causal,
)
class FlashCrossAttention(nn.Module):
"""Implement the scaled dot product attention with softmax.
Arguments
---------
softmax_scale: The temperature to use for the softmax attention.
(default: 1/sqrt(d_keys) where d_keys is computed at
runtime)
attention_dropout: The dropout rate to apply to the attention
(default: 0.0)
"""
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
super().__init__()
assert (
flash_attn_varlen_kvpacked_func is not None
), "FlashAttention is not installed"
assert flash_attn_kvpacked_func is not None, "FlashAttention is not installed"
self.causal = causal
self.softmax_scale = softmax_scale
self.drop = nn.Dropout(attention_dropout)
def forward(
self,
q,
kv,
causal=None,
cu_seqlens=None,
max_seqlen=None,
cu_seqlens_k=None,
max_seqlen_k=None,
):
"""Implements the multihead softmax attention.
Arguments
---------
q: The tensor containing the query. (B, Sq, H, D)
kv: The tensor containing the key and value. (B, Sk, 2, H_k, D)
causal: if passed, will override self.causal
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
of the sequences in the batch, used to index into q.
max_seqlen: int. Maximum sequence length in the batch of q.
cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
of the sequences in the batch, used to index into kv.
max_seqlen_k: int. Maximum sequence length in the batch of k and v.
"""
assert q.dtype in [torch.float16, torch.bfloat16]
assert q.is_cuda and kv.is_cuda
causal = self.causal if causal is None else causal
unpadded = cu_seqlens is not None
if unpadded:
assert cu_seqlens.dtype == torch.int32
assert max_seqlen is not None
assert isinstance(max_seqlen, int)
assert cu_seqlens_k is not None
assert cu_seqlens_k.dtype == torch.int32
assert max_seqlen_k is not None
assert isinstance(max_seqlen, int)
return flash_attn_varlen_kvpacked_func(
q,
kv,
cu_seqlens,
cu_seqlens_k,
max_seqlen,
max_seqlen_k,
self.drop.p if self.training else 0.0,
softmax_scale=self.softmax_scale,
causal=causal,
)
else:
batch_size, seqlen_q = q.shape[0], q.shape[1]
seqlen_k = kv.shape[1]
assert kv.shape[0] == batch_size and kv.shape[4] == q.shape[3]
return flash_attn_kvpacked_func(
q,
kv,
self.drop.p if self.training else 0.0,
causal=causal,
softmax_scale=self.softmax_scale,
)
class SelfAttention(nn.Module):
"""Implement the scaled dot product attention with softmax.
Arguments
---------
softmax_scale: The temperature to use for the softmax attention.
(default: 1/sqrt(d_keys) where d_keys is computed at
runtime)
attention_dropout: The dropout rate to apply to the attention
(default: 0.0)
"""
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
super().__init__()
self.causal = causal
self.softmax_scale = softmax_scale
self.drop = nn.Dropout(attention_dropout)
def forward(self, qkv, causal=None, key_padding_mask=None):
"""Implements the multihead softmax attention.
Arguments
---------
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D)
causal: if passed, will override self.causal
key_padding_mask: boolean mask to apply to the attention weights. True means to keep,
False means to mask out. (B, S)
"""
batch_size, seqlen = qkv.shape[0], qkv.shape[1]
causal = self.causal if causal is None else causal
q, k, v = qkv.unbind(dim=2)
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
if key_padding_mask is not None:
padding_mask = torch.full(
(batch_size, seqlen), -10000.0, dtype=scores.dtype, device=scores.device
)
padding_mask.masked_fill_(key_padding_mask, 0.0)
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
if causal:
# "triu_tril_cuda_template" not implemented for 'BFloat16'
# So we have to construct the mask in float
causal_mask = torch.triu(
torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1
)
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
scores = scores + causal_mask.to(dtype=scores.dtype)
attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
attention_drop = self.drop(attention)
output = torch.einsum("bhts,bshd->bthd", attention_drop, v)
return output
class CrossAttention(nn.Module):
"""Implement the scaled dot product attention with softmax.
Arguments
---------
softmax_scale: The temperature to use for the softmax attention.
(default: 1/sqrt(d_keys) where d_keys is computed at
runtime)
attention_dropout: The dropout rate to apply to the attention
(default: 0.0)
"""
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
super().__init__()
self.causal = causal
self.softmax_scale = softmax_scale
self.drop = nn.Dropout(attention_dropout)
def forward(self, q, kv, causal=None, key_padding_mask=None):
"""Implements the multihead softmax attention.
Arguments
---------
q: The tensor containing the query. (B, Sq, H, D)
kv: The tensor containing the key and value. (B, Sk, 2, H_k, D)
causal: if passed, will override self.causal
key_padding_mask: boolean mask to apply to the attention weights. True means to keep,
False means to mask out. (B, Sk)
"""
batch_size, seqlen_q = q.shape[0], q.shape[1]
causal = self.causal if causal is None else causal
seqlen_k = kv.shape[1]
assert kv.shape[0] == batch_size and kv.shape[4] == q.shape[3]
if kv.shape[3] != q.shape[2]: # MQA/GQA
kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3])
k, v = kv.unbind(dim=2)
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
if key_padding_mask is not None:
padding_mask = torch.full(
(batch_size, seqlen_k),
-10000.0,
dtype=scores.dtype,
device=scores.device,
)
padding_mask.masked_fill_(key_padding_mask, 0.0)
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
if causal:
# "triu_tril_cuda_template" not implemented for 'BFloat16'
# So we have to construct the mask in float
causal_mask = torch.triu(
torch.full((seqlen_q, seqlen_k), -10000.0, device=scores.device), 1
)
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
scores = scores + causal_mask.to(dtype=scores.dtype)
attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
attention_drop = self.drop(attention)
output = torch.einsum("bhts,bshd->bthd", attention_drop, v)
return output
class LinearResidual(nn.Linear):
"""Wrap nn.Linear to return the residual as well. For compatibility with FusedDense."""
def forward(self, input: torch.Tensor) -> torch.Tensor:
return super().forward(input), input
def _update_kv_cache(kv, inference_params, layer_idx):
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)"""
# Pre-allocate memory for key-values for inference.
num_heads, head_dim = kv.shape[-2:]
if layer_idx not in inference_params.key_value_memory_dict:
kv_cache = torch.empty(
inference_params.max_batch_size,
inference_params.max_sequence_len,
2,
num_heads,
head_dim,
dtype=kv.dtype,
device=kv.device,
)
inference_params.key_value_memory_dict[layer_idx] = kv_cache
else:
if not inference_params.fused_ft_kernel:
kv_cache = inference_params.key_value_memory_dict[layer_idx]
else:
# For FT, k_cache has shape (b, h, headdim / packsize, s, packsize)
# where packsize = 4 if fp32, 8 if fp16 or bf16.
# v_cache has shape (b, h, s, headdim)
k_cache, v_cache = inference_params.key_value_memory_dict[layer_idx]
kv_cache = None
# Adjust key and value for inference
batch_start = inference_params.batch_size_offset
batch_end = batch_start + kv.shape[0]
sequence_start = inference_params.sequence_len_offset
sequence_end = sequence_start + kv.shape[1]
assert batch_end <= (
kv_cache.shape[0] if kv_cache is not None else v_cache.shape[0]
)
assert sequence_end <= (
kv_cache.shape[1] if kv_cache is not None else v_cache.shape[2]
)
# Copy key and values.
if not inference_params.fused_ft_kernel:
assert kv_cache is not None
kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
kv = kv_cache[batch_start:batch_end, :sequence_end, ...]
return kv
else:
assert inference_params.sequence_len_offset == 0
# FT kernel requires different layouts for the k_cache and v_cache.
assert kv.dtype in [torch.float16, torch.bfloat16, torch.float32]
packsize = 4 if kv.dtype == torch.float32 else 8
if kv_cache is not None:
kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
k_cache = rearrange(
kv_cache[:, :, 0],
"b s h (d packsize) -> b h d s packsize",
packsize=packsize,
).contiguous()
v_cache = rearrange(kv_cache[:, :, 1], "b s h d -> b h s d").contiguous()
inference_params.key_value_memory_dict[layer_idx] = (k_cache, v_cache)
else:
k_cache[batch_start:batch_end, :, :, :sequence_end, :] = rearrange(
kv[:, :, 0], "b s h (d packsize) -> b h d s packsize", packsize=packsize
)
v_cache[batch_start:batch_end, :, :sequence_end, :] = rearrange(
kv[:, :, 1], "b s h d -> b h s d"
)
return kv
def _apply_rotary_single_query_attention(
qkv,
inference_params,
layer_idx,
rotary_emb_dim,
rotary_emb_base,
kv=None,
rotary_emb_interleaved=False,
):
"""
qkv: (batch_size, 1, 3, nheads, head_dim) if kv is None else it's just
q of shape (batch_size, 1, nheads, head_dim)
kv: (batch_size, 1, 2, nheads_kv, head_dim)
"""
assert inference_params.fused_ft_kernel
assert ft_attention is not None
if kv is None:
q, k, v = rearrange(qkv, "b 1 three h d -> b three h d").unbind(dim=1)
else:
q = rearrange(qkv, "b 1 h d -> b h d")
k, v = rearrange(kv, "b 1 two h d -> b two h d").unbind(dim=1)
batch_start = inference_params.batch_size_offset
batch_end = batch_start + q.shape[0]
k_cache, v_cache = inference_params.key_value_memory_dict[layer_idx]
lengths_per_sample = (
inference_params.lengths_per_sample[batch_start:batch_end]
if inference_params.lengths_per_sample is not None
else None
)
context = ft_attention.single_query_attention(
q,
k,
v,
k_cache[batch_start:batch_end],
v_cache[batch_start:batch_end],
lengths_per_sample,
None, # rotary_cos_
None, # rotary_sin_
None, # nnz_head_idx
inference_params.sequence_len_offset,
rotary_emb_dim,
rotary_emb_base,
not rotary_emb_interleaved, # neox_rotary_style
)
return rearrange(context, "b h d -> b 1 h d")
class MHA(nn.Module):
"""Multi-head self-attention and cross-attention"""
def __init__(
self,
embed_dim,
num_heads,
num_heads_kv=None,
cross_attn=False,
qkv_proj_bias=True,
out_proj_bias=True,
dropout=0.0,
softmax_scale=None,
causal=False,
layer_idx=None,
dwconv=False,
rotary_emb_dim=0,
rotary_emb_base=10000.0,
rotary_emb_scale_base=None,
rotary_emb_interleaved=False,
fused_bias_fc=False,
use_flash_attn=False,
return_residual=False,
checkpointing=False,
device=None,
dtype=None,
) -> None:
"""
num_heads_kv: can be used to toggle MQA / GQA. If None, use num_heads.
return_residual: whether to return the input x along with the output. This is for
performance reason: for post-norm architecture, returning the input allows us
to fuse the backward of nn.Linear with the residual connection.
"""
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.embed_dim = embed_dim
self.cross_attn = cross_attn
self.causal = causal
self.layer_idx = layer_idx
self.dwconv = dwconv
self.rotary_emb_dim = rotary_emb_dim
self.use_flash_attn = use_flash_attn
self.return_residual = return_residual
self.checkpointing = checkpointing
self.num_heads = num_heads
self.num_heads_kv = num_heads_kv if num_heads_kv is not None else num_heads
assert (
self.num_heads % self.num_heads_kv == 0
), "num_heads must be divisible by num_heads_kv"
assert (
self.embed_dim % num_heads == 0
), "embed_dim must be divisible by num_heads"
self.head_dim = self.embed_dim // num_heads
qkv_dim = self.head_dim * (self.num_heads + 2 * self.num_heads_kv)
kv_dim = 2 * self.head_dim * self.num_heads_kv
if self.rotary_emb_dim > 0:
assert (
not cross_attn
), "MHA with rotary embedding does not support cross-attention yet"
assert RotaryEmbedding is not None, "rotary_emb is not installed"
self.rotary_emb = RotaryEmbedding(
self.rotary_emb_dim,
base=rotary_emb_base,
scale_base=rotary_emb_scale_base,
interleaved=rotary_emb_interleaved,
device=device,
)
if fused_bias_fc and FusedDense is None:
raise ImportError("fused_dense is not installed")
linear_cls = nn.Linear if not fused_bias_fc else FusedDense
linear_resid_cls = (
LinearResidual
if not fused_bias_fc
else partial(FusedDense, return_residual=True)
)
wqkv_cls = linear_cls if not self.return_residual else linear_resid_cls
inner_attn_cls = FlashSelfAttention if use_flash_attn else SelfAttention
inner_cross_attn_cls = FlashCrossAttention if use_flash_attn else CrossAttention
if not self.cross_attn:
self.Wqkv = wqkv_cls(
embed_dim, qkv_dim, bias=qkv_proj_bias, **factory_kwargs
)
else:
self.Wq = linear_cls(
embed_dim, embed_dim, bias=qkv_proj_bias, **factory_kwargs
)
self.Wkv = wqkv_cls(embed_dim, kv_dim, bias=qkv_proj_bias, **factory_kwargs)
if self.dwconv:
if self.num_heads_kv == self.num_heads:
self.dwconv_qkv = nn.Conv1d(
qkv_dim, qkv_dim, kernel_size=3, padding=2, groups=qkv_dim
)
else:
self.dwconv_q = nn.Conv1d(
embed_dim, embed_dim, kernel_size=3, padding=2, groups=embed_dim
)
self.dwconv_kv = nn.Conv1d(
kv_dim, kv_dim, kernel_size=3, padding=2, groups=kv_dim
)
self.inner_attn = inner_attn_cls(
causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout
)
self.inner_cross_attn = inner_cross_attn_cls(
causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout
)
self.out_proj = linear_cls(
embed_dim, embed_dim, bias=out_proj_bias, **factory_kwargs
)
def allocate_inference_cache(
self, batch_size, max_seqlen, dtype=None, fused_ft_kernel=True
):
dtype = self.out_proj.weight.dtype if dtype is None else dtype
device = self.out_proj.weight.device
if not fused_ft_kernel:
return torch.empty(
batch_size,
max_seqlen,
2,
self.num_heads_kv,
self.head_dim,
dtype=dtype,
device=device,
)
else:
assert dtype in [torch.float16, torch.bfloat16, torch.float32]
packsize = 4 if dtype == torch.float32 else 8
assert self.head_dim % packsize == 0
k_cache = torch.empty(
batch_size,
self.num_heads_kv,
self.head_dim // packsize,
max_seqlen,
packsize,
dtype=dtype,
device=device,
)
v_cache = torch.empty(
batch_size,
self.num_heads_kv,
max_seqlen,
self.head_dim,
dtype=dtype,
device=device,
)
return k_cache, v_cache
def _update_kv_cache(self, kv, inference_params):
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)"""
assert not self.dwconv, "Generation does not support dwconv yet"
assert (
self.layer_idx is not None
), "Generation requires layer_idx in the constructor"
return _update_kv_cache(kv, inference_params, self.layer_idx)
def _apply_rotary_single_query_attention(self, qkv, inference_params, kv=None):
"""
qkv: (batch_size, 1, 3, nheads, head_dim) if kv is None else it's just
q of shape (batch_size, 1, nheads, head_dim)
kv: (batch_size, 1, 2, nheads_kv, head_dim)
"""
rotary_emb_base = self.rotary_emb.base if self.rotary_emb_dim > 0 else 0
return _apply_rotary_single_query_attention(
qkv,
inference_params,
self.layer_idx,
self.rotary_emb_dim,
rotary_emb_base,
kv=kv,
rotary_emb_interleaved=self.rotary_emb.interleaved
if self.rotary_emb_dim > 0
else False,
)
def forward(
self,
x,
x_kv=None,
key_padding_mask=None,
cu_seqlens=None,
max_seqlen=None,
mixer_subset=None,
inference_params=None,
**kwargs,
):
"""
Arguments:
x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if
cu_seqlens is None and max_seqlen is None, else (total, hidden_dim) where total
is the is the sum of the sequence lengths in the batch.
x_kv: (batch, seqlen, hidden_dim), only applicable for cross-attention. If None, use x.
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
of the sequences in the batch, used to index into x. Only applicable when using
FlashAttention.
max_seqlen: int. Maximum sequence length in the batch.
key_padding_mask: boolean mask, True means to keep, False means to mask out.
(batch, seqlen). Only applicable when not using FlashAttention.
mixer_subset: for cross-attention only. If not None, will take a subset of x
before applying the query projection. Useful for e.g., ViT where we only care
about the CLS token in the last layer.
inference_params: for generation. Adapted from Megatron-LM (and Apex)
https://github.com/NVIDIA/apex/blob/3ff1a10f72ec07067c4e44759442329804ac5162/apex/transformer/testing/standalone_transformer_lm.py#L470
"""
### md note: in order to same as multihead_attention3.py input(x) format(seqlen,batch, hidden_dim)
x = x.transpose(
0, 1
) # (seqlen,batch, hidden_dim) -> (batch, seqlen, hidden_dim)
if cu_seqlens is not None:
assert max_seqlen is not None
assert key_padding_mask is None
assert self.use_flash_attn
assert not self.dwconv
assert self.rotary_emb_dim == 0
if key_padding_mask is not None:
assert cu_seqlens is None
assert max_seqlen is None
assert not self.use_flash_attn
if inference_params is not None:
assert key_padding_mask is None
assert cu_seqlens is None and max_seqlen is None
assert not self.dwconv
kwargs = (
{"cu_seqlens": cu_seqlens, "max_seqlen": max_seqlen, **kwargs}
if self.use_flash_attn
else {"key_padding_mask": key_padding_mask, **kwargs}
)
seqlen_offset = (
0 if inference_params is None else inference_params.sequence_len_offset
)
if not self.cross_attn and self.num_heads_kv == self.num_heads:
assert x_kv is None and mixer_subset is None
if not self.return_residual:
qkv = self.Wqkv(x)
else:
qkv, x = self.Wqkv(x)
if self.dwconv:
qkv = rearrange(
self.dwconv_qkv(rearrange(qkv, "b s d -> b d s"))[..., :-2],
"b d s -> b s d",
).contiguous()
qkv = rearrange(
qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim
)
if (
inference_params is None
or inference_params.sequence_len_offset == 0
or not inference_params.fused_ft_kernel
):
if self.rotary_emb_dim > 0:
qkv = self.rotary_emb(qkv, seqlen_offset=seqlen_offset)
if inference_params is None:
if not self.checkpointing:
context = self.inner_attn(qkv, **kwargs)
else:
context = torch.utils.checkpoint.checkpoint(
self.inner_attn, qkv, **kwargs
)
else:
q = qkv[:, :, 0]
kv = self._update_kv_cache(qkv[:, :, 1:], inference_params)
# If we're processing the prompt, causal=None (use self.causal).
# If we're decoding, then causal=False.
causal = (
None if inference_params.sequence_len_offset == 0 else False
)
context = self.inner_cross_attn(q, kv, causal=causal)
else:
context = self._apply_rotary_single_query_attention(
qkv, inference_params
)
else:
if self.cross_attn:
if not self.return_residual:
q = self.Wq(x if mixer_subset is None else x[:, mixer_subset])
kv = self.Wkv(x_kv if x_kv is not None else x)
else:
if x_kv is not None:
kv, x_kv = self.Wkv(x_kv)
else:
kv, x = self.Wkv(x)
q = self.Wq(x if mixer_subset is None else x[:, mixer_subset])
else:
assert self.num_heads_kv != self.num_heads
if not self.return_residual:
qkv = self.Wqkv(x)
else:
qkv, x = self.Wqkv(x)
q = qkv[..., : self.num_heads * self.head_dim]
kv = qkv[..., self.num_heads * self.head_dim :]
q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim)
kv = rearrange(
kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim
)
if self.dwconv:
q = rearrange(
self.dwconv_q(rearrange(q, "b s d -> b d s"))[..., :-2],
"b d s -> b s d",
).contiguous()
kv = rearrange(
self.dwconv_kv(rearrange(kv, "b s d -> b d s"))[..., :-2],
"b d s -> b s d",
).contiguous()
if (
inference_params is None
or inference_params.sequence_len_offset == 0
or not inference_params.fused_ft_kernel
):
if self.rotary_emb_dim > 0:
q, kv = self.rotary_emb(q, kv, seqlen_offset=seqlen_offset)
if inference_params is None:
if not self.checkpointing:
context = self.inner_cross_attn(q, kv, **kwargs)
else:
context = torch.utils.checkpoint.checkpoint(
self.inner_cross_attn, q, kv, **kwargs
)
else:
kv = self._update_kv_cache(kv, inference_params)
# If we're processing the prompt, causal=None (use self.causal).
# If we're decoding, then causal=False.
causal = (
None if inference_params.sequence_len_offset == 0 else False
)
context = self.inner_cross_attn(q, kv, causal=causal)
else:
context = self._apply_rotary_single_query_attention(
q, inference_params, kv=kv
)
out = self.out_proj(rearrange(context, "... h d -> ... (h d)"))
### md note: in order to same as multihead_attention3.py output format(seqlen,batch, hidden_dim)
out = out.transpose(0, 1)
return out if not self.return_residual else (out, x)
class ParallelMHA(nn.Module):
"""Multi-head self-attention and cross-attention"""
def __init__(
self,
embed_dim,
num_heads,
process_group,
num_heads_kv=None,
qkv_proj_bias=True,
out_proj_bias=True,
dropout=0.0,
softmax_scale=None,
causal=False,
layer_idx=None,
rotary_emb_dim=0,
rotary_emb_base=10000.0,
rotary_emb_scale_base=None,
rotary_emb_interleaved=False,
use_flash_attn=False,
checkpointing=False,
sequence_parallel=True,
device=None,
dtype=None,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.embed_dim = embed_dim
self.causal = causal
self.layer_idx = layer_idx
self.rotary_emb_dim = rotary_emb_dim
self.use_flash_attn = use_flash_attn
self.checkpointing = checkpointing
self.process_group = process_group
self.world_size = process_group.size()
self.local_rank = torch.distributed.get_rank(process_group)
self.num_heads = num_heads
assert (
self.embed_dim % self.num_heads == 0
), "embed_dim must be divisible by num_heads"
self.num_heads_kv = num_heads_kv if num_heads_kv is not None else num_heads
assert (
self.num_heads % self.num_heads_kv == 0
), "num_heads must be divisible by num_heads_kv"
self.num_heads_per_rank = get_dim_for_local_rank(
self.num_heads, self.world_size, self.local_rank
)
self.num_heads_kv_per_rank = get_dim_for_local_rank(
self.num_heads, self.world_size, self.local_rank
)
self.head_dim = self.embed_dim // num_heads
qkv_dim = self.head_dim * (self.num_heads + 2 * self.num_heads_kv)
if self.rotary_emb_dim > 0:
assert RotaryEmbedding is not None, "rotary_emb is not installed"
self.rotary_emb = RotaryEmbedding(
self.rotary_emb_dim,
base=rotary_emb_base,
scale_base=rotary_emb_scale_base,
interleaved=rotary_emb_interleaved,
device=device,
)
if ColumnParallelLinear is None or RowParallelLinear is None:
raise ImportError("fused_dense is not installed")
self.Wqkv = ColumnParallelLinear(
embed_dim,
qkv_dim,
process_group,
bias=qkv_proj_bias,
sequence_parallel=sequence_parallel,
multiple_of=self.head_dim * 3,
**factory_kwargs,
)
inner_attn_cls = FlashSelfAttention if use_flash_attn else SelfAttention
inner_cross_attn_cls = FlashCrossAttention if use_flash_attn else CrossAttention
self.inner_attn = inner_attn_cls(
causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout
)
self.inner_cross_attn = inner_cross_attn_cls(
causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout
)
self.out_proj = RowParallelLinear(
embed_dim,
embed_dim,
process_group,
bias=out_proj_bias,
sequence_parallel=sequence_parallel,
multiple_of=self.head_dim,
**factory_kwargs,
)
def allocate_inference_cache(
self, batch_size, max_seqlen, dtype=None, fused_ft_kernel=True
):
dtype = self.out_proj.weight.dtype if dtype is None else dtype
device = self.out_proj.weight.device
if not fused_ft_kernel:
return torch.empty(
batch_size,
max_seqlen,
2,
self.num_heads_kv_per_rank,
self.head_dim,
dtype=dtype,
device=device,
)
else:
assert dtype in [torch.float16, torch.bfloat16, torch.float32]
packsize = 4 if dtype == torch.float32 else 8
assert self.head_dim % packsize == 0
k_cache = torch.empty(
batch_size,
self.num_heads_kv_per_rank,
self.head_dim // packsize,
max_seqlen,
packsize,
dtype=dtype,
device=device,
)
v_cache = torch.empty(
batch_size,
self.num_heads_kv_per_rank,
max_seqlen,
self.head_dim,
dtype=dtype,
device=device,
)
return k_cache, v_cache
def _update_kv_cache(self, kv, inference_params):
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)"""
assert (
self.layer_idx is not None
), "Generation requires layer_idx in the constructor"
return _update_kv_cache(kv, inference_params, self.layer_idx)
def _apply_rotary_single_query_attention(self, qkv, inference_params, kv=None):
"""
qkv: (batch_size, 1, 3, nheads, head_dim) if kv is None else it's just
q of shape (batch_size, 1, nheads, head_dim)
kv: (batch_size, 1, 2, nheads_kv, head_dim)
"""
rotary_emb_base = self.rotary_emb.base if self.rotary_emb_dim > 0 else 0
return _apply_rotary_single_query_attention(
qkv,
inference_params,
self.layer_idx,
self.rotary_emb_dim,
rotary_emb_base,
kv=kv,
rotary_emb_interleaved=self.rotary_emb.interleaved
if self.rotary_emb_dim > 0
else False,
)
def forward(self, x, seqlen=None, inference_params=None, **kwargs):
"""
Arguments:
x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if seqlen=None.
If seqlen is not None, x is (batch * seqlen, hidden_dim). This is so that when we
split x during sequence parallel, we split the batch * seqlen dimension
(in case batch is small).
"""
qkv = self.Wqkv(x)
if seqlen is not None:
qkv = rearrange(qkv, "(b s) ... -> b s ...", s=seqlen)
seqlen_offset = (
0 if inference_params is None else inference_params.sequence_len_offset
)
if self.num_heads_kv == self.num_heads:
qkv = rearrange(
qkv, "b s (three h d) -> b s three h d", three=3, d=self.head_dim
)
if (
inference_params is None
or inference_params.sequence_len_offset == 0
or not inference_params.fused_ft_kernel
):
if self.rotary_emb_dim > 0:
qkv = self.rotary_emb(qkv, seqlen_offset=seqlen_offset)
if inference_params is None:
if not self.checkpointing:
context = self.inner_attn(qkv, **kwargs)
else:
context = torch.utils.checkpoint.checkpoint(
self.inner_attn, qkv, **kwargs
)
else:
q = qkv[:, :, 0]
kv = _update_kv_cache(
qkv[:, :, 1:], inference_params, self.layer_idx
)
# If we're processing the prompt, causal=None (use self.causal).
# If we're decoding, then causal=False.
causal = (
None if inference_params.sequence_len_offset == 0 else False
)
context = self.inner_cross_attn(q, kv, causal=causal)
else:
context = self._apply_rotary_single_query_attention(
qkv, inference_params
)
else:
q = rearrange(
qkv[..., : self.num_heads_per_rank * self.head_dim],
"... (h d) -> ... h d",
d=self.head_dim,
)
kv = rearrange(
qkv[..., self.num_heads_per_rank * self.head_dim :],
"... (two hkv d) -> ... two hkv d",
two=2,
d=self.head_dim,
)
if (
inference_params is None
or inference_params.sequence_len_offset == 0
or not inference_params.fused_ft_kernel
):
if self.rotary_emb_dim > 0:
q, kv = self.rotary_emb(q, kv, seqlen_offset=seqlen_offset)
if inference_params is None:
if not self.checkpointing:
context = self.inner_cross_attn(q, kv, **kwargs)
else:
context = torch.utils.checkpoint.checkpoint(
self.inner_cross_attn, q, kv, **kwargs
)