-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdelter.py
56 lines (45 loc) · 1.59 KB
/
delter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import streamlit as st
import torch
from torchvision import transforms
from PIL import Image
# preprocess the image in order to be infered by the model
def preprocessImage(img):
transform = transforms.Compose([
transforms.Resize([224, 224]),
transforms.ToTensor(),
])
img = transform(img).unsqueeze(0)
return img
# predict the class of the image
def predict(img):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = torch.load('aerialDelter.pth')
model.eval()
img = preprocessImage(img)
with torch.no_grad():
output = model(img)
classes = ['grass', 'marshy', 'rocky', 'sandy']
_, pred = output.max(1)
return classes[pred.item()]
def main():
page_bg_img = '''
<style>
body {
background-image: url("https://images.unsplash.com/photo-1542281286-9e0a16bb7366");
background-size: cover;
}
</style>
'''
st.markdown(page_bg_img, unsafe_allow_html=True)
st.title('DELTER')
st.write('DELTER stands for Deep Learning Model Terrain Recognition. A finetuned ResNet50 (using PyTorch Library) predicts the terrain of the given picture.')
st.write('Upload an image and click on the predict button to see the result')
uploaded_file = st.file_uploader('Choose an image', type=['jpg', 'jpeg', 'png'])
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.image(image, caption='Uploaded Image', use_column_width=True)
st.write('')
label = predict(image)
st.write(f'Prediction: {label}')
if __name__ == '__main__':
main()