-
Notifications
You must be signed in to change notification settings - Fork 390
/
Copy pathcoco.py
431 lines (391 loc) · 17.7 KB
/
coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
# --------------------------------------------------------
# Fast/er R-CNN
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------
from datasets.imdb import imdb
import datasets.ds_utils as ds_utils
from fast_rcnn.config import cfg
import os.path as osp
import sys
import os
import numpy as np
import scipy.sparse
import scipy.io as sio
import cPickle
import json
import uuid
# COCO API
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from pycocotools import mask as COCOmask
def _filter_crowd_proposals(roidb, crowd_thresh):
"""
Finds proposals that are inside crowd regions and marks them with
overlap = -1 (for all gt rois), which means they will be excluded from
training.
"""
for ix, entry in enumerate(roidb):
overlaps = entry['gt_overlaps'].toarray()
crowd_inds = np.where(overlaps.max(axis=1) == -1)[0]
non_gt_inds = np.where(entry['gt_classes'] == 0)[0]
if len(crowd_inds) == 0 or len(non_gt_inds) == 0:
continue
iscrowd = [int(True) for _ in xrange(len(crowd_inds))]
crowd_boxes = ds_utils.xyxy_to_xywh(entry['boxes'][crowd_inds, :])
non_gt_boxes = ds_utils.xyxy_to_xywh(entry['boxes'][non_gt_inds, :])
ious = COCOmask.iou(non_gt_boxes, crowd_boxes, iscrowd)
bad_inds = np.where(ious.max(axis=1) > crowd_thresh)[0]
overlaps[non_gt_inds[bad_inds], :] = -1
roidb[ix]['gt_overlaps'] = scipy.sparse.csr_matrix(overlaps)
return roidb
class coco(imdb):
def __init__(self, image_set, year):
imdb.__init__(self, 'coco_' + year + '_' + image_set)
# COCO specific config options
self.config = {'top_k' : 2000,
'use_salt' : True,
'cleanup' : True,
'crowd_thresh' : 0.7,
'rpn_file': None,
'min_size' : 2}
# name, paths
self._year = year
self._image_set = image_set
self._data_path = os.environ['HOME'] + '/data/Object_Detection/coco'
# load COCO API, classes, class <-> id mappings
self._COCO = COCO(self._get_ann_file())
cats = self._COCO.loadCats(self._COCO.getCatIds())
self._classes = tuple(['__background__'] + [c['name'] for c in cats])
self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes)))
self._class_to_coco_cat_id = dict(zip([c['name'] for c in cats],
self._COCO.getCatIds()))
self._image_index = self._load_image_set_index()
# Default to roidb handler
self.set_proposal_method('selective_search')
self.competition_mode(False)
# Some image sets are "views" (i.e. subsets) into others.
# For example, minival2014 is a random 5000 image subset of val2014.
# This mapping tells us where the view's images and proposals come from.
self._view_map = {
'minival2014' : 'val2014', # 5k val2014 subset
'valminusminival2014' : 'val2014', # val2014 \setminus minival2014
'test-dev2015' : 'test2015',
}
coco_name = image_set + year # e.g., "val2014"
self._data_name = (self._view_map[coco_name]
if self._view_map.has_key(coco_name)
else coco_name)
# Dataset splits that have ground-truth annotations (test splits
# do not have gt annotations)
self._gt_splits = ('train', 'val', 'minival')
def _get_ann_file(self):
prefix = 'instances' if self._image_set.find('test') == -1 \
else 'image_info'
return osp.join(self._data_path, 'annotations',
prefix + '_' + self._image_set + self._year + '.json')
def _load_image_set_index(self):
"""
Load image ids.
"""
image_ids = self._COCO.getImgIds()
return image_ids
def _get_widths(self):
anns = self._COCO.loadImgs(self._image_index)
widths = [ann['width'] for ann in anns]
return widths
def image_path_at(self, i):
"""
Return the absolute path to image i in the image sequence.
"""
return self.image_path_from_index(self._image_index[i])
def image_path_from_index(self, index):
"""
Construct an image path from the image's "index" identifier.
"""
# Example image path for index=119993:
# images/train2014/COCO_train2014_000000119993.jpg
file_name = ('COCO_' + self._data_name + '_' +
str(index).zfill(12) + '.jpg')
image_path = osp.join(self._data_path, 'images',
self._data_name, file_name)
assert osp.exists(image_path), \
'Path does not exist: {}'.format(image_path)
return image_path
def selective_search_roidb(self):
return self._roidb_from_proposals('selective_search')
def edge_boxes_roidb(self):
return self._roidb_from_proposals('edge_boxes_AR')
def mcg_roidb(self):
return self._roidb_from_proposals('MCG')
def rpn_roidb(self):
if (self._image_set != 'val') and ('test' not in self._image_set):
gt_roidb = self.gt_roidb()
rpn_roidb = self._load_rpn_roidb(gt_roidb)
roidb = imdb.merge_roidbs(gt_roidb, rpn_roidb)
else:
roidb = self._load_rpn_roidb(None)
return roidb
def _load_rpn_roidb(self, gt_roidb):
filename = self.config['rpn_file']
print 'loading {}'.format(filename)
assert os.path.exists(filename), \
'rpn data not found at: {}'.format(filename)
with open(filename, 'rb') as f:
box_list = cPickle.load(f)
return self.create_roidb_from_box_list(box_list, gt_roidb)
def _roidb_from_proposals(self, method):
"""
Creates a roidb from pre-computed proposals of a particular methods.
"""
top_k = self.config['top_k']
cache_file = osp.join(self.cache_path, self.name +
'_{:s}_top{:d}'.format(method, top_k) +
'_roidb.pkl')
if osp.exists(cache_file):
with open(cache_file, 'rb') as fid:
roidb = cPickle.load(fid)
print '{:s} {:s} roidb loaded from {:s}'.format(self.name, method,
cache_file)
return roidb
if self._image_set in self._gt_splits:
gt_roidb = self.gt_roidb()
method_roidb = self._load_proposals(method, gt_roidb)
roidb = imdb.merge_roidbs(gt_roidb, method_roidb)
# Make sure we don't use proposals that are contained in crowds
roidb = _filter_crowd_proposals(roidb, self.config['crowd_thresh'])
else:
roidb = self._load_proposals(method, None)
with open(cache_file, 'wb') as fid:
cPickle.dump(roidb, fid, cPickle.HIGHEST_PROTOCOL)
print 'wrote {:s} roidb to {:s}'.format(method, cache_file)
return roidb
def _load_proposals(self, method, gt_roidb):
"""
Load pre-computed proposals in the format provided by Jan Hosang:
http://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-
computing/research/object-recognition-and-scene-understanding/how-
good-are-detection-proposals-really/
For MCG, use boxes from http://www.eecs.berkeley.edu/Research/Projects/
CS/vision/grouping/mcg/ and convert the file layout using
lib/datasets/tools/mcg_munge.py.
"""
box_list = []
top_k = self.config['top_k']
valid_methods = [
'MCG',
'selective_search',
'edge_boxes_AR',
'edge_boxes_70']
assert method in valid_methods
print 'Loading {} boxes'.format(method)
for i, index in enumerate(self._image_index):
if i % 1000 == 0:
print '{:d} / {:d}'.format(i + 1, len(self._image_index))
box_file = osp.join(
cfg.DATA_DIR, 'coco_proposals', method, 'mat',
self._get_box_file(index))
raw_data = sio.loadmat(box_file)['boxes']
boxes = np.maximum(raw_data - 1, 0).astype(np.uint16)
if method == 'MCG':
# Boxes from the MCG website are in (y1, x1, y2, x2) order
boxes = boxes[:, (1, 0, 3, 2)]
# Remove duplicate boxes and very small boxes and then take top k
keep = ds_utils.unique_boxes(boxes)
boxes = boxes[keep, :]
keep = ds_utils.filter_small_boxes(boxes, self.config['min_size'])
boxes = boxes[keep, :]
boxes = boxes[:top_k, :]
box_list.append(boxes)
# Sanity check
im_ann = self._COCO.loadImgs(index)[0]
width = im_ann['width']
height = im_ann['height']
ds_utils.validate_boxes(boxes, width=width, height=height)
return self.create_roidb_from_box_list(box_list, gt_roidb)
def gt_roidb(self):
"""
Return the database of ground-truth regions of interest.
This function loads/saves from/to a cache file to speed up future calls.
"""
cache_file = osp.join(self.cache_path, self.name + '_gt_roidb.pkl')
if osp.exists(cache_file):
with open(cache_file, 'rb') as fid:
roidb = cPickle.load(fid)
print '{} gt roidb loaded from {}'.format(self.name, cache_file)
return roidb
gt_roidb = [self._load_coco_annotation(index)
for index in self._image_index]
with open(cache_file, 'wb') as fid:
cPickle.dump(gt_roidb, fid, cPickle.HIGHEST_PROTOCOL)
print 'wrote gt roidb to {}'.format(cache_file)
return gt_roidb
def _load_coco_annotation(self, index):
"""
Loads COCO bounding-box instance annotations. Crowd instances are
handled by marking their overlaps (with all categories) to -1. This
overlap value means that crowd "instances" are excluded from training.
"""
im_ann = self._COCO.loadImgs(index)[0]
width = im_ann['width']
height = im_ann['height']
annIds = self._COCO.getAnnIds(imgIds=index, iscrowd=None)
objs = self._COCO.loadAnns(annIds)
# Sanitize bboxes -- some are invalid
valid_objs = []
for obj in objs:
x1 = np.max((0, obj['bbox'][0]))
y1 = np.max((0, obj['bbox'][1]))
x2 = np.min((width - 1, x1 + np.max((0, obj['bbox'][2] - 1))))
y2 = np.min((height - 1, y1 + np.max((0, obj['bbox'][3] - 1))))
if obj['area'] > 0 and x2 >= x1 and y2 >= y1:
obj['clean_bbox'] = [x1, y1, x2, y2]
valid_objs.append(obj)
objs = valid_objs
num_objs = len(objs)
boxes = np.zeros((num_objs, 4), dtype=np.uint16)
gt_classes = np.zeros((num_objs), dtype=np.int32)
overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32)
seg_areas = np.zeros((num_objs), dtype=np.float32)
# Lookup table to map from COCO category ids to our internal class
# indices
coco_cat_id_to_class_ind = dict([(self._class_to_coco_cat_id[cls],
self._class_to_ind[cls])
for cls in self._classes[1:]])
for ix, obj in enumerate(objs):
cls = coco_cat_id_to_class_ind[obj['category_id']]
boxes[ix, :] = obj['clean_bbox']
gt_classes[ix] = cls
seg_areas[ix] = obj['area']
if obj['iscrowd']:
# Set overlap to -1 for all classes for crowd objects
# so they will be excluded during training
overlaps[ix, :] = -1.0
else:
overlaps[ix, cls] = 1.0
ds_utils.validate_boxes(boxes, width=width, height=height)
overlaps = scipy.sparse.csr_matrix(overlaps)
return {'boxes' : boxes,
'gt_classes': gt_classes,
'gt_overlaps' : overlaps,
'flipped' : False,
'seg_areas' : seg_areas}
def _get_box_file(self, index):
# first 14 chars / first 22 chars / all chars + .mat
# COCO_val2014_0/COCO_val2014_000000447/COCO_val2014_000000447991.mat
file_name = ('COCO_' + self._data_name +
'_' + str(index).zfill(12) + '.mat')
return osp.join(file_name[:14], file_name[:22], file_name)
def _print_detection_eval_metrics(self, coco_eval):
IoU_lo_thresh = 0.5
IoU_hi_thresh = 0.95
def _get_thr_ind(coco_eval, thr):
ind = np.where((coco_eval.params.iouThrs > thr - 1e-5) &
(coco_eval.params.iouThrs < thr + 1e-5))[0][0]
iou_thr = coco_eval.params.iouThrs[ind]
assert np.isclose(iou_thr, thr)
return ind
ind_lo = _get_thr_ind(coco_eval, IoU_lo_thresh)
ind_hi = _get_thr_ind(coco_eval, IoU_hi_thresh)
# precision has dims (iou, recall, cls, area range, max dets)
# area range index 0: all area ranges
# max dets index 2: 100 per image
precision = \
coco_eval.eval['precision'][ind_lo:(ind_hi + 1), :, :, 0, 2]
ap_default = np.mean(precision[precision > -1])
print ('~~~~ Mean and per-category AP @ IoU=[{:.2f},{:.2f}] '
'~~~~').format(IoU_lo_thresh, IoU_hi_thresh)
print '{:.1f}'.format(100 * ap_default)
for cls_ind, cls in enumerate(self.classes):
if cls == '__background__':
continue
# minus 1 because of __background__
precision = coco_eval.eval['precision'][ind_lo:(ind_hi + 1), :, cls_ind - 1, 0, 2]
ap = np.mean(precision[precision > -1])
print '{:.1f}'.format(100 * ap)
print '~~~~ Summary metrics ~~~~'
coco_eval.summarize()
cfg.mAP = coco_eval.stats
def _do_detection_eval(self, res_file, output_dir):
ann_type = 'bbox'
coco_dt = self._COCO.loadRes(res_file)
coco_eval = COCOeval(self._COCO, coco_dt)
coco_eval.params.useSegm = (ann_type == 'segm')
coco_eval.evaluate()
coco_eval.accumulate()
self._print_detection_eval_metrics(coco_eval)
eval_file = osp.join(output_dir, 'detection_results.pkl')
with open(eval_file, 'wb') as fid:
cPickle.dump(coco_eval, fid, cPickle.HIGHEST_PROTOCOL)
print 'Wrote COCO eval results to: {}'.format(eval_file)
def _coco_results_one_category(self, boxes, cat_id):
results = []
for im_ind, index in enumerate(self.image_index):
if type(boxes[im_ind]) == list:
continue
dets = boxes[im_ind].astype(np.float)
if dets == []:
continue
# dets = dets[:500, :]
scores = dets[:, -1]
xs = dets[:, 0]
ys = dets[:, 1]
ws = dets[:, 2] - xs + 1
hs = dets[:, 3] - ys + 1
results.extend(
[{'image_id' : index,
'category_id' : cat_id,
'bbox' : [xs[k], ys[k], ws[k], hs[k]],
'score' : scores[k]} for k in xrange(dets.shape[0])])
# if cfg.single_scale_test is True:
# results.extend(
# [{'image_id' : index,
# 'category_id' : cat_id,
# 'bbox' : [xs[k], ys[k], ws[k], hs[k]],
# 'score' : scores[k]} for k in xrange(dets.shape[0])])
# else:
# results.extend(
# [{'image_id' : index,
# 'category_id' : cat_id,
# 'bbox' : [round(xs[k], 2), round(ys[k], 2), round(ws[k], 2), round(hs[k], 2)],
# 'score' : round(scores[k], 3)} for k in xrange(dets.shape[0])])
return results
def _write_coco_results_file(self, all_boxes, res_file):
# [{"image_id": 42,
# "category_id": 18,
# "bbox": [258.15,41.29,348.26,243.78],
# "score": 0.236}, ...]
results = []
for cls_ind, cls in enumerate(self.classes):
if cls == '__background__':
continue
print 'Collecting {} results ({:d}/{:d})'.format(cls, cls_ind,
self.num_classes - 1)
coco_cat_id = self._class_to_coco_cat_id[cls]
results.extend(self._coco_results_one_category(all_boxes[cls_ind],
coco_cat_id))
print 'Writing results json to {}'.format(res_file)
with open(res_file, 'w') as fid:
json.dump(results, fid)
def evaluate_detections(self, all_boxes, output_dir):
res_file = osp.join(output_dir, ('detections_' +
self._image_set +
self._year +
'_results'))
if self.config['use_salt']:
res_file += '_{}'.format(str(uuid.uuid4()))
res_file += '.json'
self._write_coco_results_file(all_boxes, res_file)
# Only do evaluation on non-test sets
if self._image_set.find('test') == -1:
self._do_detection_eval(res_file, output_dir)
# Optionally cleanup results json file
if self.config['cleanup']:
os.remove(res_file)
def competition_mode(self, on):
if on:
self.config['use_salt'] = False
self.config['cleanup'] = False
else:
self.config['use_salt'] = True
self.config['cleanup'] = True