-
Notifications
You must be signed in to change notification settings - Fork 12
/
main.py
141 lines (104 loc) · 4.32 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import argparse
import os
import time
import gym
import numpy as np
import torch
import TD7
def train_online(RL_agent, env, eval_env, args):
evals = []
start_time = time.time()
allow_train = False
state, ep_finished = env.reset(), False
ep_total_reward, ep_timesteps, ep_num = 0, 0, 1
for t in range(int(args.max_timesteps+1)):
maybe_evaluate_and_print(RL_agent, eval_env, evals, t, start_time, args)
if allow_train:
action = RL_agent.select_action(np.array(state))
else:
action = env.action_space.sample()
next_state, reward, ep_finished, _ = env.step(action)
ep_total_reward += reward
ep_timesteps += 1
done = float(ep_finished) if ep_timesteps < env._max_episode_steps else 0
RL_agent.replay_buffer.add(state, action, next_state, reward, done)
state = next_state
if allow_train and not args.use_checkpoints:
RL_agent.train()
if ep_finished:
print(f"Total T: {t+1} Episode Num: {ep_num} Episode T: {ep_timesteps} Reward: {ep_total_reward:.3f}")
if allow_train and args.use_checkpoints:
RL_agent.maybe_train_and_checkpoint(ep_timesteps, ep_total_reward)
if t >= args.timesteps_before_training:
allow_train = True
state, done = env.reset(), False
ep_total_reward, ep_timesteps = 0, 0
ep_num += 1
def train_offline(RL_agent, env, eval_env, args):
RL_agent.replay_buffer.load_D4RL(d4rl.qlearning_dataset(env))
evals = []
start_time = time.time()
for t in range(int(args.max_timesteps+1)):
maybe_evaluate_and_print(RL_agent, eval_env, evals, t, start_time, args, d4rl=True)
RL_agent.train()
def maybe_evaluate_and_print(RL_agent, eval_env, evals, t, start_time, args, d4rl=False):
if t % args.eval_freq == 0:
print("---------------------------------------")
print(f"Evaluation at {t} time steps")
print(f"Total time passed: {round((time.time()-start_time)/60.,2)} min(s)")
total_reward = np.zeros(args.eval_eps)
for ep in range(args.eval_eps):
state, done = eval_env.reset(), False
while not done:
action = RL_agent.select_action(np.array(state), args.use_checkpoints, use_exploration=False)
state, reward, done, _ = eval_env.step(action)
total_reward[ep] += reward
print(f"Average total reward over {args.eval_eps} episodes: {total_reward.mean():.3f}")
if d4rl:
total_reward = eval_env.get_normalized_score(total_reward) * 100
print(f"D4RL score: {total_reward.mean():.3f}")
print("---------------------------------------")
evals.append(total_reward)
np.save(f"./results/{args.file_name}", evals)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# RL
parser.add_argument("--env", default="HalfCheetah-v4", type=str)
parser.add_argument("--seed", default=0, type=int)
parser.add_argument("--offline", default=False, action=argparse.BooleanOptionalAction)
parser.add_argument('--use_checkpoints', default=True, action=argparse.BooleanOptionalAction)
# Evaluation
parser.add_argument("--timesteps_before_training", default=25e3, type=int)
parser.add_argument("--eval_freq", default=5e3, type=int)
parser.add_argument("--eval_eps", default=10, type=int)
parser.add_argument("--max_timesteps", default=5e6, type=int)
# File
parser.add_argument('--file_name', default=None)
parser.add_argument('--d4rl_path', default="./d4rl_datasets", type=str)
args = parser.parse_args()
if args.offline:
import d4rl
d4rl.set_dataset_path(args.d4rl_path)
args.use_checkpoints = False
if args.file_name is None:
args.file_name = f"TD7_{args.env}_{args.seed}"
if not os.path.exists("./results"):
os.makedirs("./results")
env = gym.make(args.env)
eval_env = gym.make(args.env)
print("---------------------------------------")
print(f"Algorithm: TD7, Env: {args.env}, Seed: {args.seed}")
print("---------------------------------------")
env.seed(args.seed)
env.action_space.seed(args.seed)
eval_env.seed(args.seed+100)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
max_action = float(env.action_space.high[0])
RL_agent = TD7.Agent(state_dim, action_dim, max_action, args.offline)
if args.offline:
train_offline(RL_agent, env, eval_env, args)
else:
train_online(RL_agent, env, eval_env, args)