-
Notifications
You must be signed in to change notification settings - Fork 439
/
main.py
138 lines (109 loc) · 5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import numpy as np
import torch
import gym
import argparse
import os
import utils
import TD3
import OurDDPG
import DDPG
# Runs policy for X episodes and returns average reward
def evaluate_policy(policy, eval_episodes=10):
avg_reward = 0.
for _ in xrange(eval_episodes):
obs = env.reset()
done = False
while not done:
action = policy.select_action(np.array(obs))
obs, reward, done, _ = env.step(action)
avg_reward += reward
avg_reward /= eval_episodes
print "---------------------------------------"
print "Evaluation over %d episodes: %f" % (eval_episodes, avg_reward)
print "---------------------------------------"
return avg_reward
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--policy_name", default="TD3") # Policy name
parser.add_argument("--env_name", default="HalfCheetah-v1") # OpenAI gym environment name
parser.add_argument("--seed", default=0, type=int) # Sets Gym, PyTorch and Numpy seeds
parser.add_argument("--start_timesteps", default=1e4, type=int) # How many time steps purely random policy is run for
parser.add_argument("--eval_freq", default=5e3, type=float) # How often (time steps) we evaluate
parser.add_argument("--max_timesteps", default=1e6, type=float) # Max time steps to run environment for
parser.add_argument("--save_models", action="store_true") # Whether or not models are saved
parser.add_argument("--expl_noise", default=0.1, type=float) # Std of Gaussian exploration noise
parser.add_argument("--batch_size", default=100, type=int) # Batch size for both actor and critic
parser.add_argument("--discount", default=0.99, type=float) # Discount factor
parser.add_argument("--tau", default=0.005, type=float) # Target network update rate
parser.add_argument("--policy_noise", default=0.2, type=float) # Noise added to target policy during critic update
parser.add_argument("--noise_clip", default=0.5, type=float) # Range to clip target policy noise
parser.add_argument("--policy_freq", default=2, type=int) # Frequency of delayed policy updates
args = parser.parse_args()
file_name = "%s_%s_%s" % (args.policy_name, args.env_name, str(args.seed))
print "---------------------------------------"
print "Settings: %s" % (file_name)
print "---------------------------------------"
if not os.path.exists("./results"):
os.makedirs("./results")
if args.save_models and not os.path.exists("./pytorch_models"):
os.makedirs("./pytorch_models")
env = gym.make(args.env_name)
# Set seeds
env.seed(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
max_action = float(env.action_space.high[0])
# Initialize policy
if args.policy_name == "TD3": policy = TD3.TD3(state_dim, action_dim, max_action)
elif args.policy_name == "OurDDPG": policy = OurDDPG.DDPG(state_dim, action_dim, max_action)
elif args.policy_name == "DDPG": policy = DDPG.DDPG(state_dim, action_dim, max_action)
replay_buffer = utils.ReplayBuffer()
# Evaluate untrained policy
evaluations = [evaluate_policy(policy)]
total_timesteps = 0
timesteps_since_eval = 0
episode_num = 0
done = True
while total_timesteps < args.max_timesteps:
if done:
if total_timesteps != 0:
print("Total T: %d Episode Num: %d Episode T: %d Reward: %f") % (total_timesteps, episode_num, episode_timesteps, episode_reward)
if args.policy_name == "TD3":
policy.train(replay_buffer, episode_timesteps, args.batch_size, args.discount, args.tau, args.policy_noise, args.noise_clip, args.policy_freq)
else:
policy.train(replay_buffer, episode_timesteps, args.batch_size, args.discount, args.tau)
# Evaluate episode
if timesteps_since_eval >= args.eval_freq:
timesteps_since_eval %= args.eval_freq
evaluations.append(evaluate_policy(policy))
if args.save_models: policy.save(file_name, directory="./pytorch_models")
np.save("./results/%s" % (file_name), evaluations)
# Reset environment
obs = env.reset()
done = False
episode_reward = 0
episode_timesteps = 0
episode_num += 1
# Select action randomly or according to policy
if total_timesteps < args.start_timesteps:
action = env.action_space.sample()
else:
action = policy.select_action(np.array(obs))
if args.expl_noise != 0:
action = (action + np.random.normal(0, args.expl_noise, size=env.action_space.shape[0])).clip(env.action_space.low, env.action_space.high)
# Perform action
new_obs, reward, done, _ = env.step(action)
done_bool = 0 if episode_timesteps + 1 == env._max_episode_steps else float(done)
episode_reward += reward
# Store data in replay buffer
replay_buffer.add((obs, new_obs, action, reward, done_bool))
obs = new_obs
episode_timesteps += 1
total_timesteps += 1
timesteps_since_eval += 1
# Final evaluation
evaluations.append(evaluate_policy(policy))
if args.save_models: policy.save("%s" % (file_name), directory="./pytorch_models")
np.save("./results/%s" % (file_name), evaluations)