# Release History
## 0.9.0 (2022-08-30)

### New Features:
- Added support for displaying source code as comments in the generated scripts when registering UDFs.
This feature is turned on by default. To turn it off, pass the new keyword argument `source_code_display` as `False` when calling `register()` or `@udf()`.
- Added support for calling table functions from `DataFrame.select()`, `DataFrame.with_column()` and `DataFrame.with_columns()` which now take parameters of type `table_function.TableFunctionCall` for columns.
- Added keyword argument `overwrite` to `session.write_pandas()` to allow overwriting contents of a Snowflake table with that of a Pandas DataFrame.
- Added keyword argument `column_order` to `df.write.save_as_table()` to specify the matching rules when inserting data into table in append mode.
- Added method `FileOperation.put_stream()` to upload local files to a stage via file stream.
- Added methods `TableFunctionCall.alias()` and `TableFunctionCall.as_()` to allow aliasing the names of columns that come from the output of table function joins.
- Added function `get_active_session()` in module `snowflake.snowpark.context` to get the current active Snowpark session.

### Bug Fixes:
- Fixed a bug in which batch insert should not raise an error when `statement_params` is not passed to the function.
- Fixed a bug in which column names should be quoted when `session.create_dataframe()` is called with dicts and a given schema.
- Fixed a bug in which creation of table should be skipped if the table already exists and is in append mode when calling `df.write.save_as_table()`.
- Fixed a bug in which third-party packages with underscores cannot be added when registering UDFs.

### Improvements:
- Improved function `function.uniform()` to infer the types of inputs `max_` and `min_` and cast the limits to `IntegerType` or `FloatType` correspondingly.

## 0.8.0 (2022-07-22)

### New Features:
- Added keyword only argument `statement_params` to the following methods to allow for specifying statement level parameters:
  - `collect`, `to_local_iterator`, `to_pandas`, `to_pandas_batches`,
  `count`, `copy_into_table`, `show`, `create_or_replace_view`, `create_or_replace_temp_view`, `first`, `cache_result`
  and `random_split` on class `snowflake.snowpark.Dateframe`.
  - `update`, `delete` and `merge` on class `snowflake.snowpark.Table`.
  - `save_as_table` and `copy_into_location` on class `snowflake.snowpark.DataFrameWriter`.
  - `approx_quantile`, `statement_params`, `cov` and `crosstab` on class `snowflake.snowpark.DataFrameStatFunctions`.
  - `register` and `register_from_file` on class `snowflake.snowpark.udf.UDFRegistration`.
  - `register` and `register_from_file` on class `snowflake.snowpark.udtf.UDTFRegistration`.
  - `register` and `register_from_file` on class `snowflake.snowpark.stored_procedure.StoredProcedureRegistration`.
  - `udf`, `udtf` and `sproc` in `snowflake.snowpark.functions`.
- Added support for `Column` as an input argument to `session.call()`.
- Added support for `table_type` in `df.write.save_as_table()`. You can now choose from these `table_type` options: `"temporary"`, `"temp"`, and `"transient"`.

### Improvements:
- Added validation of object name in `session.use_*` methods.
- Updated the query tag in SQL to escape it when it has special characters.
- Added a check to see if Anaconda terms are acknowledged when adding missing packages.

### Bug Fixes:
- Fixed the limited length of the string column in `session.create_dataframe()`.
- Fixed a bug in which `session.create_dataframe()` mistakenly converted 0 and `False` to `None` when the input data was only a list.
- Fixed a bug in which calling `session.create_dataframe()` using a large local dataset sometimes created a temp table twice.
- Aligned the definition of `function.trim()` with the SQL function definition.
- Fixed an issue where snowpark-python would hang when using the Python system-defined (built-in function) `sum` vs. the Snowpark `function.sum()`.


## 0.7.0 (2022-05-25)

### New Features:
- Added support for user-defined table functions (UDTFs).
  - Use function `snowflake.snowpark.functions.udtf()` to register a UDTF, or use it as a decorator to register the UDTF.
    - You can also use `Session.udtf.register()` to register a UDTF.
  - Use `Session.udtf.register_from_file()` to register a UDTF from a Python file.
- Updated APIs to query a table function, including both Snowflake built-in table functions and UDTFs.
  - Use function `snowflake.snowpark.functions.table_function()` to create a callable representing a table function and use it to call the table function in a query.
  - Alternatively, use function `snowflake.snowpark.functions.call_table_function()` to call a table function.
  - Added support for `over` clause that specifies `partition by` and `order by` when lateral joining a table function.
  - Updated `Session.table_function()` and `DataFrame.join_table_function()` to accept `TableFunctionCall` instances.

### Breaking Changes:
- When creating a function with `functions.udf()` and `functions.sproc()`, you can now specify an empty list for the `imports` or `packages` argument to indicate that no import or package is used for this UDF or stored procedure. Previously, specifying an empty list meant that the function would use session-level imports or packages.
- Improved the `__repr__` implementation of data types in `types.py`. The unused `type_name` property has been removed.
- Added a Snowpark-specific exception class for SQL errors. This replaces the previous `ProgrammingError` from the Python connector.

### Improvements:
- Added a lock to a UDF or UDTF when it is called for the first time per thread.
- Improved the error message for pickling errors that occurred during UDF creation.
- Included the query ID when logging the failed query.

### Bug Fixes:
- Fixed a bug in which non-integral data (such as timestamps) was occasionally converted to integer when calling `DataFrame.to_pandas()`.
- Fixed a bug in which `DataFrameReader.parquet()` failed to read a parquet file when its column contained spaces.
- Fixed a bug in which `DataFrame.copy_into_table()` failed when the dataframe is created by reading a file with inferred schemas.

### Deprecations
`Session.flatten()` and `DataFrame.flatten()`.

### Dependency Updates:
- Restricted the version of `cloudpickle` <= `2.0.0`.


## 0.6.0 (2022-04-27)

### New Features:
- Added support for vectorized UDFs with the input as a Pandas DataFrame or Pandas Series and the output as a Pandas Series. This improves the performance of UDFs in Snowpark.
- Added support for inferring the schema of a DataFrame by default when it is created by reading a Parquet, Avro, or ORC file in the stage.
- Added functions `current_session()`, `current_statement()`, `current_user()`, `current_version()`, `current_warehouse()`, `date_from_parts()`, `date_trunc()`, `dayname()`, `dayofmonth()`, `dayofweek()`, `dayofyear()`, `grouping()`, `grouping_id()`, `hour()`, `last_day()`, `minute()`, `next_day()`, `previous_day()`, `second()`, `month()`, `monthname()`, `quarter()`, `year()`, `current_database()`, `current_role()`, `current_schema()`, `current_schemas()`, `current_region()`, `current_avaliable_roles()`, `add_months()`, `any_value()`, `bitnot()`, `bitshiftleft()`, `bitshiftright()`, `convert_timezone()`, `uniform()`, `strtok_to_array()`, `sysdate()`, `time_from_parts()`,  `timestamp_from_parts()`, `timestamp_ltz_from_parts()`, `timestamp_ntz_from_parts()`, `timestamp_tz_from_parts()`, `weekofyear()`, `percentile_cont()` to `snowflake.snowflake.functions`.

### Breaking Changes:
- Expired deprecations:
  - Removed the following APIs that were deprecated in 0.4.0: `DataFrame.groupByGroupingSets()`, `DataFrame.naturalJoin()`, `DataFrame.joinTableFunction`, `DataFrame.withColumns()`, `Session.getImports()`, `Session.addImport()`, `Session.removeImport()`, `Session.clearImports()`, `Session.getSessionStage()`, `Session.getDefaultDatabase()`, `Session.getDefaultSchema()`, `Session.getCurrentDatabase()`, `Session.getCurrentSchema()`, `Session.getFullyQualifiedCurrentSchema()`.

### Improvements:
- Added support for creating an empty `DataFrame` with a specific schema using the `Session.create_dataframe()` method.
- Changed the logging level from `INFO` to `DEBUG` for several logs (e.g., the executed query) when evaluating a dataframe.
- Improved the error message when failing to create a UDF due to pickle errors.

### Bug Fixes:
- Removed pandas hard dependencies in the `Session.create_dataframe()` method.

### Dependency Updates:
- Added `typing-extension` as a new dependency with the version >= `4.1.0`.


## 0.5.0 (2022-03-22)

### New Features
- Added stored procedures API.
  - Added `Session.sproc` property and `sproc()` to `snowflake.snowpark.functions`, so you can register stored procedures.
  - Added `Session.call` to call stored procedures by name.
- Added `UDFRegistration.register_from_file()` to allow registering UDFs from Python source files or zip files directly.
- Added `UDFRegistration.describe()` to describe a UDF.
- Added `DataFrame.random_split()` to provide a way to randomly split a dataframe.
- Added functions `md5()`, `sha1()`, `sha2()`, `ascii()`, `initcap()`, `length()`, `lower()`, `lpad()`, `ltrim()`, `rpad()`, `rtrim()`, `repeat()`, `soundex()`, `regexp_count()`, `replace()`, `charindex()`, `collate()`, `collation()`, `insert()`, `left()`, `right()`, `endswith()` to `snowflake.snowpark.functions`.
- Allowed `call_udf()` to accept literal values.
- Provided a `distinct` keyword in `array_agg()`.

### Bug Fixes:
- Fixed an issue that caused `DataFrame.to_pandas()` to have a string column if `Column.cast(IntegerType())` was used.
- Fixed a bug in `DataFrame.describe()` when there is more than one string column.

## 0.4.0 (2022-02-15)

### New Features
- You can now specify which Anaconda packages to use when defining UDFs.
  - Added `add_packages()`, `get_packages()`, `clear_packages()`, and `remove_package()`, to class `Session`.
  - Added `add_requirements()` to `Session` so you can use a requirements file to specify which packages this session will use.
  - Added parameter `packages` to function `snowflake.snowpark.functions.udf()` and method `UserDefinedFunction.register()` to indicate UDF-level Anaconda package dependencies when creating a UDF.
  - Added parameter `imports` to `snowflake.snowpark.functions.udf()` and `UserDefinedFunction.register()` to specify UDF-level code imports.
- Added a parameter `session` to function `udf()` and `UserDefinedFunction.register()` so you can specify which session to use to create a UDF if you have multiple sessions.
- Added types `Geography` and `Variant` to `snowflake.snowpark.types` to be used as type hints for Geography and Variant data when defining a UDF.
- Added support for Geography geoJSON data.
- Added `Table`, a subclass of `DataFrame` for table operations:
  - Methods `update` and `delete` update and delete rows of a table in Snowflake.
  - Method `merge` merges data from a `DataFrame` to a `Table`.
  - Override method `DataFrame.sample()` with an additional parameter `seed`, which works on tables but not on view and sub-queries.
- Added `DataFrame.to_local_iterator()` and `DataFrame.to_pandas_batches()` to allow getting results from an iterator when the result set returned from the Snowflake database is too large.
- Added `DataFrame.cache_result()` for caching the operations performed on a `DataFrame` in a temporary table.
  Subsequent operations on the original `DataFrame` have no effect on the cached result `DataFrame`.
- Added property `DataFrame.queries` to get SQL queries that will be executed to evaluate the `DataFrame`.
- Added `Session.query_history()` as a context manager to track SQL queries executed on a session, including all SQL queries to evaluate `DataFrame`s created from a session. Both query ID and query text are recorded.
- You can now create a `Session` instance from an existing established `snowflake.connector.SnowflakeConnection`. Use parameter `connection` in `Session.builder.configs()`.
- Added `use_database()`, `use_schema()`, `use_warehouse()`, and `use_role()` to class `Session` to switch database/schema/warehouse/role after a session is created.
- Added `DataFrameWriter.copy_into_table()` to unload a `DataFrame` to stage files.
- Added `DataFrame.unpivot()`.
- Added `Column.within_group()` for sorting the rows by columns with some aggregation functions.
- Added functions `listagg()`, `mode()`, `div0()`, `acos()`, `asin()`, `atan()`, `atan2()`, `cos()`, `cosh()`, `sin()`, `sinh()`, `tan()`, `tanh()`, `degrees()`, `radians()`, `round()`, `trunc()`, and `factorial()` to `snowflake.snowflake.functions`.
- Added an optional argument `ignore_nulls` in function `lead()` and `lag()`.
- The `condition` parameter of function `when()` and `iff()` now accepts SQL expressions.

### Improvements
- All function and method names have been renamed to use the snake case naming style, which is more Pythonic. For convenience, some camel case names are kept as aliases to the snake case APIs. It is recommended to use the snake case APIs.
  - Deprecated these methods on class `Session` and replaced them with their snake case equivalents: `getImports()`, `addImports()`, `removeImport()`, `clearImports()`, `getSessionStage()`, `getDefaultSchema()`, `getDefaultSchema()`, `getCurrentDatabase()`, `getFullyQualifiedCurrentSchema()`.
  - Deprecated these methods on class `DataFrame` and replaced them with their snake case equivalents: `groupingByGroupingSets()`, `naturalJoin()`, `withColumns()`, `joinTableFunction()`.
- Property `DataFrame.columns` is now consistent with `DataFrame.schema.names` and the Snowflake database `Identifier Requirements`.
- `Column.__bool__()` now raises a `TypeError`. This will ban the use of logical operators `and`, `or`, `not` on `Column` object, for instance `col("a") > 1 and col("b") > 2` will raise the `TypeError`. Use `(col("a") > 1) & (col("b") > 2)` instead.
- Changed `PutResult` and `GetResult` to subclass `NamedTuple`.
- Fixed a bug which raised an error when the local path or stage location has a space or other special characters.
- Changed `DataFrame.describe()` so that non-numeric and non-string columns are ignored instead of raising an exception.

### Dependency updates
- Updated ``snowflake-connector-python`` to 2.7.4.

## 0.3.0 (2022-01-09)
### New Features
- Added `Column.isin()`, with an alias `Column.in_()`.
- Added `Column.try_cast()`, which is a special version of `cast()`. It tries to cast a string expression to other types and returns `null` if the cast is not possible.
- Added `Column.startswith()` and `Column.substr()` to process string columns.
- `Column.cast()` now also accepts a `str` value to indicate the cast type in addition to a `DataType` instance.
- Added `DataFrame.describe()` to summarize stats of a `DataFrame`.
- Added `DataFrame.explain()` to print the query plan of a `DataFrame`.
- `DataFrame.filter()` and `DataFrame.select_expr()` now accepts a sql expression.
- Added a new `bool` parameter `create_temp_table` to methods `DataFrame.saveAsTable()` and `Session.write_pandas()` to optionally create a temp table.
- Added `DataFrame.minus()` and `DataFrame.subtract()` as aliases to `DataFrame.except_()`.
- Added `regexp_replace()`, `concat()`, `concat_ws()`, `to_char()`, `current_timestamp()`, `current_date()`, `current_time()`, `months_between()`, `cast()`, `try_cast()`, `greatest()`, `least()`, and `hash()` to module `snowflake.snowpark.functions`.

### Bug Fixes
- Fixed an issue where `Session.createDataFrame(pandas_df)` and `Session.write_pandas(pandas_df)` raise an exception when the `Pandas DataFrame` has spaces in the column name.
- `DataFrame.copy_into_table()` sometimes prints an `error` level log entry while it actually works. It's fixed now.
- Fixed an API docs issue where some `DataFrame` APIs are missing from the docs.

### Dependency updates
- Update ``snowflake-connector-python`` to 2.7.2, which upgrades ``pyarrow`` dependency to 6.0.x. Refer to the [python connector 2.7.2 release notes](https://pypi.org/project/snowflake-connector-python/2.7.2/) for more details.

## 0.2.0 (2021-12-02)
### New Features
- Updated the `Session.createDataFrame()` method for creating a `DataFrame` from a Pandas DataFrame.
- Added the `Session.write_pandas()` method for writing a `Pandas DataFrame` to a table in Snowflake and getting a `Snowpark DataFrame` object back.
- Added new classes and methods for calling window functions.
- Added the new functions `cume_dist()`, to find the cumulative distribution of a value with regard to other values within a window partition,
  and `row_number()`, which returns a unique row number for each row within a window partition.
- Added functions for computing statistics for DataFrames in the `DataFrameStatFunctions` class.
- Added functions for handling missing values in a DataFrame in the `DataFrameNaFunctions` class.
- Added new methods `rollup()`, `cube()`, and `pivot()` to the `DataFrame` class.
- Added the `GroupingSets` class, which you can use with the DataFrame groupByGroupingSets method to perform a SQL GROUP BY GROUPING SETS.
- Added the new `FileOperation(session)`
  class that you can use to upload and download files to and from a stage.
- Added the `DataFrame.copy_into_table()`
  method for loading data from files in a stage into a table.
- In CASE expressions, the functions `when()` and `otherwise()`
  now accept Python types in addition to `Column` objects.
- When you register a UDF you can now optionally set the `replace` parameter to `True` to overwrite an existing UDF with the same name.

### Improvements
- UDFs are now compressed before they are uploaded to the server. This makes them about 10 times smaller, which can help
  when you are using large ML model files.
- When the size of a UDF is less than 8196 bytes, it will be uploaded as in-line code instead of uploaded to a stage.

### Bug Fixes
- Fixed an issue where the statement `df.select(when(col("a") == 1, 4).otherwise(col("a"))), [Row(4), Row(2), Row(3)]` raised an exception.
- Fixed an issue where `df.toPandas()` raised an exception when a DataFrame was created from large local data.

## 0.1.0 (2021-10-26)

Start of Private Preview