-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
153 lines (122 loc) · 4.93 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import os
import sys
import torch
import dataloader
import torch.nn.functional as F
from utils.args_parser import args_parser, print_args
from tqdm import tqdm
import torch.nn as nn
import numpy as np
from models import network
from skimage.metrics import peak_signal_noise_ratio as compare_psnr
from skimage.metrics import structural_similarity as compare_ssim
def main():
global args, exp_dir, best_result, device, tb_freq
args = args_parser()
print_args(args)
exp_dir = os.path.join('workspace/', args.workspace, args.exp)
assert os.path.isdir(exp_dir), 'exp_path is wrong'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
sys.path.append(exp_dir)
num_cls = args.num_cls
num_obj = args.num_obj
vector_dim = args.vector_dim
Gridnet = network.RGB2GRAY(vector_dim).to(device)
Gridnet = nn.DataParallel(Gridnet)
Encoder = network.Encoder(vector_dim, num_cls, num_obj).to(device)
Encoder = nn.DataParallel(Encoder)
print('\n==> Model was loaded successfully!')
checkpoint = torch.load(os.path.join(exp_dir, 'step1.pth.tar'))
Encoder.load_state_dict(checkpoint['state_dict'])
proxies = checkpoint['state_dict_loss']['proxies']
proxies = torch.nn.functional.normalize(proxies, p=2, dim=1)
dataset_names = dataloader.get_dataset(args.dataset_test)
test_set = dataset_names(root_dir=args.dataset_path, split='test')
test_loader = torch.utils.data.DataLoader(
test_set, batch_size=1,
num_workers=args.workers, shuffle=True, drop_last=True)
checkpoint = torch.load(os.path.join(exp_dir, 'step2_best.pth.tar'))
Gridnet.load_state_dict(checkpoint['state_dict'])
test(test_loader, Gridnet, Encoder, proxies)
class AverageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def test(test_loader, Gridnet, Encoder, proxy):
top1_psnr_o = AverageMeter()
top1_psnr = AverageMeter()
top1_ssim_o = AverageMeter()
top1_ssim = AverageMeter()
torch.cuda.empty_cache()
Encoder.eval()
Gridnet.eval()
for data in tqdm(test_loader, mininterval=5):
rgb_img = data[0].to(device)
gt_img = data[1].to(device)
gray_img = data[2].to(device)
style_idx = data[-1].to(device)
target_proxy = proxy.to(device)
count_o = 0
with torch.no_grad():
source_proxy, _, _ = Encoder(gray_img)
target_proxy = target_proxy[style_idx]
for i in range(len(style_idx)):
if style_idx[i] // 4 == 2:
count_o += 1
target_proxy[i] = source_proxy[i]
output, _ = Gridnet(rgb_img, source_proxy, target_proxy, gray_img)
psnr, ssim, psnr_o, ssim_o = psnr_ssim(output, gt_img, style_idx, args.eval_border)
if count_o != 0:
top1_psnr_o.update(psnr_o, count_o)
top1_ssim_o.update(ssim_o, count_o)
if len(gt_img) - count_o != 0:
top1_psnr.update(psnr, len(gt_img) - count_o)
top1_ssim.update(ssim, len(gt_img) - count_o)
print(
'Test \t PNSR: {top1_psnr:.3f}, SSIM: {top1_ssim:.4f}, PNSR_O: {top1_psnr_o:.3f}, SSIM_O: {top1_ssim_o:.4f}'.format(
top1_psnr=top1_psnr.avg, top1_ssim=top1_ssim.avg, top1_ssim_o=top1_ssim_o.avg, top1_psnr_o=top1_psnr_o.avg))
return top1_psnr.avg, top1_ssim.avg
def psnr_ssim(gt_img, predict_img, style_idx, eval_border):
gt_img = gt_img[:,:,eval_border:-eval_border,eval_border:-eval_border]
predict_img = predict_img[:,:,eval_border:-eval_border,eval_border:-eval_border]
gt_np = gt_img.permute([0, 2, 3, 1]).detach().cpu().numpy()
output_np = predict_img.permute([0, 2, 3, 1]).detach().cpu().numpy()
gt_np = np.clip(gt_np * 255.0, 0, 255).astype(np.uint8)
output_np = np.clip(output_np * 255.0, 0, 255).astype(np.uint8)
psnr = 0
psnr_o = 0
ssim = 0
ssim_o = 0
count_o = 0
for j in range(len(output_np)):
if style_idx[j] // 4 == 2:
count_o += 1
psnr_o += compare_psnr(output_np[j], gt_np[j], data_range=255)
ssim_o += compare_ssim(output_np[j], gt_np[j], data_range=255, multichannel=True)
else:
psnr += compare_psnr(output_np[j], gt_np[j], data_range=255)
ssim += compare_ssim(output_np[j], gt_np[j], data_range=255, multichannel=True)
if count_o != 0:
psnr_o = psnr_o / count_o
ssim_o = ssim_o / count_o
else:
psnr_o = 0
ssim_o = 0
if len(output_np) - count_o != 0:
psnr = psnr / (len(output_np) - count_o )
ssim = ssim / (len(output_np) - count_o )
else:
psnr = 0
ssim = 0
return psnr, ssim, psnr_o, ssim_o
if __name__ == '__main__':
main()