Skip to content

Latest commit

 

History

History
238 lines (192 loc) · 8.63 KB

README.rst

File metadata and controls

238 lines (192 loc) · 8.63 KB

Gast, Beniget!

Beniget is a collection of Compile-time analyse on Python Abstract Syntax Tree(AST). It's a building block to write static analyzer or compiler for Python.

Beniget relies on gast to provide a cross version abstraction of the AST, effectively working across all Python 3 versions greater than 3.6.

Since version 0.5.0, beniget works with the standard library ast as well 🥳!

API

Basically Beniget provides three analyse:

  • beniget.Ancestors that maps each node to the list of enclosing nodes;
  • beniget.DefUseChains that maps each node to the list of definition points in that node;
  • beniget.UseDefChains that maps each node to the list of possible definition of that node.

See sample usages and/or run pydoc beniget for more information :-).

Sample Usages

Detect unused imports

This is a very basic usage: look for def without any use, and warn about them, focusing on imported values.

>>> import beniget, gast as ast

# parse some simple statements
>>> code = "from math import cos, sin; print(cos(3))"
>>> module = ast.parse(code)

# compute the def-use chains at module level
>>> duc = beniget.DefUseChains()
>>> duc.visit(module)

# grab the import statement
>>> imported = module.body[0].names

# inspect the users of each imported name
>>> for name in imported:
...   ud = duc.chains[name]
...   if not ud.users():
...     print("Unused import: {}".format(ud.name()))
Unused import: sin

NOTE: Due to the dynamic nature of Python, one can fool this analysis by calling the eval function, eventually through an indirection, or by performing a lookup into globals().

Find all functions marked with a given decorator

Let's assume we've got a @nice decorator applied to some functions. We can traverse the users of this decorator to find which functions are decorated.

# parse some simple statements
>>> code = """
... nice = lambda x: x
... @nice
... def aw(): pass
... def some(): pass"""
>>> module = ast.parse(code)

# compute the def-use chains at module level
>>> duc = beniget.DefUseChains()
>>> duc.visit(module)

# analysis to find parent of a node
>>> ancestors = beniget.Ancestors()
>>> ancestors.visit(module)

# find the nice definition
>>> nice = [d for d in duc.locals[module] if d.name() == "nice"][0]

# walkthrough its users
>>> for use in nice.users():
...   # we're interested in the parent of the decorator
...   parents = ancestors.parents(use.node)
...   # direct parent of the decorator is the function
...   fdef = parents[-1]
...   print(fdef.name)
aw

Gather attributes of self

This analysis gathers all attributes of a class, by going through all methods and checking the users of the first method parameter, investigating the one used in attribute lookup.

>>> import gast as ast
>>> import beniget

>>> class Attributes(ast.NodeVisitor):
...
...     def __init__(self, module_node):
...         # compute the def-use of the module
...         self.chains = beniget.DefUseChains()
...         self.chains.visit(module_node)
...         self.users = set()  # all users of `self`
...         self.attributes = set()  # attributes of current class
...
...     def visit_ClassDef(self, node):
...         # walk methods and fill users of `self`
...         for stmt in node.body:
...             if isinstance(stmt, ast.FunctionDef):
...                 self_def = self.chains.chains[stmt.args.args[0]]
...                 self.users.update(use.node for use in self_def.users())
...         self.generic_visit(node)
...
...     def visit_Attribute(self, node):
...         # any attribute of `self` is registered
...         if node.value in self.users:
...             self.attributes.add(node.attr)

>>> code = "class My(object):\n def __init__(self, x): self.x = x"
>>> module = ast.parse(code)
>>> classdef = module.body[0]
>>> attr = Attributes(module)
>>> attr.visit(classdef)
>>> list(attr.attributes)
['x']

NOTE: This is not an alias analysis, so assigning self to another variable, or setting it in a tuple is not captured by this analysis. It's still possible to write such an a analysis using def-use chains though ;-)

Compute the identifiers captured by a function

In Python, inner functions (and lambdas) can capture identifiers defined in the outer scope. This analysis computes such identifiers by registering each identifier defined in the function, then walking through all loaded identifier and checking whether it's local or not.

>>> import gast as ast
>>> import beniget
>>> class Capture(ast.NodeVisitor):
...
...     def __init__(self, module_node):
...         # initialize def-use chains
...         self.chains = beniget.DefUseChains()
...         self.chains.visit(module_node)
...         self.users = set()  # users of local definitions
...         self.captured = set()  # identifiers that don't belong to local users
...
...     def visit_FunctionDef(self, node):
...         # initialize the set of node using a local variable
...         for def_ in self.chains.locals[node]:
...             self.users.update(use.node for use in def_.users())
...         self.generic_visit(node)
...
...     def visit_Name(self, node):
...         # register load of identifiers not locally definied
...         if isinstance(node.ctx, ast.Load):
...             if node not in self.users:
...                 self.captured.add(node.id)

>>> code = 'def foo(x):\n def bar(): return x\n return bar'
>>> module = ast.parse(code)
>>> inner_function = module.body[0].body[0]
>>> capture = Capture(module)
>>> capture.visit(inner_function)
>>> list(capture.captured)
['x']

Compute the set of instructions required to compute a function

This is actually very similar to the computation of the closure, but this time let's use the UseDef chains combined with the ancestors.

>>> import gast as ast
>>> import beniget
>>> class CaptureX(ast.NodeVisitor):
...
...     def __init__(self, module_node, fun):
...         self.fun = fun
...         # initialize use-def chains
...         du = beniget.DefUseChains()
...         du.visit(module_node)
...         self.chains = beniget.UseDefChains(du)
...         self.ancestors = beniget.Ancestors()
...         self.ancestors.visit(module_node)
...         self.external = list()
...         self.visited_external = set()
...
...     def visit_Name(self, node):
...         # register load of identifiers not locally defined
...         if isinstance(node.ctx, ast.Load):
...             uses = self.chains.chains[node]
...             for use in uses:
...                 try:
...                     parents = self.ancestors.parents(use.node)
...                 except KeyError:
...                     return # a builtin
...                 if self.fun not in parents:
...                         parent = self.ancestors.parentStmt(use.node)
...                         if parent not in self.visited_external:
...                             self.visited_external.add(parent)
...                             self.external.append(parent)
...                             self.rec(parent)
...
...     def rec(self, node):
...         "walk definitions to find their operands's def"
...         if isinstance(node, ast.Assign):
...             self.visit(node.value)
...         # TODO: implement this for AugAssign etc


>>> code = 'a = 1; b = [a, a]; c = len(b)\ndef foo():\n return c'
>>> module = ast.parse(code)
>>> function = module.body[3]
>>> capturex = CaptureX(module, function)
>>> capturex.visit(function)
>>> # the three top level assignments have been captured!
>>> list(map(type, capturex.external))
[<class 'gast.gast.Assign'>, <class 'gast.gast.Assign'>, <class 'gast.gast.Assign'>]

Acknowledgments

Beniget is in Pierre Augier's debt, for he triggered the birth of beniget and provided countless meaningful bug reports and advices. Trugarez!