-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRBC_Gauss.gss
131 lines (86 loc) · 3.62 KB
/
RBC_Gauss.gss
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
/* Basic RBC model with full depreciation
Written by Luke Hartigan
luke(dot)hartigan(at)unsw(dot)edu(dot)au
18-11-2014
Based on codes developed by: Jesus Fernandez-Villaverde
*/
// 0. Housekeeping
new;
format /m1 /rd 9, 6;
cls;
et = hsec; // Start timer
// 1. Calibration
aalpha = 1.0/3.0; // Elasticity of output w.r.t. capital
bbeta = 0.95; // Discount factor
// Productivity values
vProductivity = {0.9792 0.9896 1.0000 1.0106 1.0212};
// Transition matrix
mTransition = {0.9727 0.0273 0.0000 0.0000 0.0000,
0.0041 0.9806 0.0153 0.0000 0.0000,
0.0000 0.0082 0.9837 0.0082 0.0000,
0.0000 0.0000 0.0153 0.9806 0.0041,
0.0000 0.0000 0.0000 0.0273 0.9727};
// 2. Steady State
capitalSteadyState = (aalpha*bbeta)^(1/(1-aalpha));
outputSteadyState = capitalSteadyState^aalpha;
consumptionSteadyState = outputSteadyState-capitalSteadyState;
print "";
print "Output = " outputSteadyState;
print "Capital = " capitalSteadyState;
print "Consumption = " consumptionSteadyState;
print "";
// We generate the grid of capital
vGridCapital = seqa(0.5*capitalSteadyState, 0.00001, 17820)';
nGridCapital = cols(vGridCapital);
nGridProductivity = cols(vProductivity);
// 3. Required matrices and vectors
mOutput = zeros(nGridCapital, nGridProductivity);
mValueFunction = zeros(nGridCapital, nGridProductivity);
mValueFunctionNew = zeros(nGridCapital, nGridProductivity);
mPolicyFunction = zeros(nGridCapital, nGridProductivity);
expectedValueFunction = zeros(nGridCapital, nGridProductivity);
// 4. We pre-build output for each point in the grid
mOutput = (vGridCapital'.^aalpha)*vProductivity;
// 5. Main iteration
maxDifference = 10.0;
tolerance = 0.0000001;
iteration = 0;
do while maxDifference > tolerance;
expectedValueFunction = mValueFunction*mTransition';
for nProductivity (1, nGridProductivity, 1);
// We start from previous choice (monotonicity of policy function)
gridCapitalNextPeriod = 1;
for nCapital (1, nGridCapital, 1);
valueHighSoFar = -1000.0;
capitalChoice = vGridCapital[1];
for nCapitalNextPeriod (gridCapitalNextPeriod, nGridCapital, 1);
consumption = mOutput[nCapital, nProductivity]-vGridCapital[nCapitalNextPeriod];
valueProvisional = (1-bbeta)*ln(consumption)+bbeta*expectedValueFunction[nCapitalNextPeriod, nProductivity];
if valueProvisional > valueHighSoFar;
valueHighSoFar = valueProvisional;
capitalChoice = vGridCapital[nCapitalNextPeriod];
gridCapitalNextPeriod = nCapitalNextPeriod;
else;
break; // We break when we have achieved the max
endif;
endfor;
mValueFunctionNew[nCapital, nProductivity] = valueHighSoFar;
mPolicyFunction[nCapital, nProductivity] = capitalChoice;
endfor;
endfor;
maxDifference = maxc(maxc(abs(mValueFunctionNew-mValueFunction)));
mValueFunction = mValueFunctionNew;
iteration = iteration + 1;
if (fmod(iteration, 10) == 0 or iteration == 1);
print "Iteration = " iteration;
print "Sup Diff = " maxDifference;
print "";
endif;
endo;
print "Iteration = " iteration;
print "Sup Diff = " maxDifference;
print "";
print "My check = " mPolicyFunction[1000, 3];
et = (hsec-et)/100; // Stop timer, convert to seconds
print "Elapse time = " et;
//EOF