-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathmerge_lora.py
52 lines (40 loc) · 1.62 KB
/
merge_lora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# -*- coding: utf-8 -*-
import torch
import argparse
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--base_model', default=None, required=True, type=str,
help="Base model name or path")
parser.add_argument('--lora_model', default=None, required=True, type=str,
help="Please specify LoRA model to be merged.")
parser.add_argument('--output_dir', default='./merged', type=str)
args = parser.parse_args()
base_model_path = args.base_model
lora_model_path = args.lora_model
output_dir = args.output_dir
print(f"Base model: {base_model_path}")
print(f"LoRA model: {lora_model_path}")
print("Loading LoRA for causal language model")
base_model = AutoModelForCausalLM.from_pretrained(
base_model_path,
torch_dtype=torch.bfloat16,
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(base_model_path)
new_model = PeftModel.from_pretrained(
base_model,
lora_model_path,
device_map="auto",
torch_dtype=torch.bfloat16,
safe_serialization=False
)
print(f"Merging with merge_and_unload...")
base_model = new_model.merge_and_unload()
print("Saving to Hugging Face format...")
tokenizer.save_pretrained(output_dir)
base_model.save_pretrained(output_dir, safe_serialization=False) # max_shard_size='10GB'
print(f"Done! model saved to {output_dir}")
if __name__ == '__main__':
main()