-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutils.py
391 lines (334 loc) · 14.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import math
def cosine_lr_schedule(optimizer, epoch, max_epoch, init_lr, min_lr):
"""Decay the learning rate"""
lr = (init_lr - min_lr) * 0.5 * (1. + math.cos(math.pi * epoch / max_epoch)) + min_lr
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def warmup_lr_schedule(optimizer, step, max_step, init_lr, max_lr):
"""Warmup the learning rate"""
lr = min(max_lr, init_lr + (max_lr - init_lr) * step / max_step)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def step_lr_schedule(optimizer, epoch, init_lr, min_lr, decay_rate):
"""Decay the learning rate"""
lr = max(min_lr, init_lr * (decay_rate**epoch))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
import numpy as np
import io
import os
import time
from collections import defaultdict, deque
import datetime
import torch
import torch.distributed as dist
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
def synchronize_between_processes(self):
"""
Warning: does not synchronize the deque!
"""
if not is_dist_avail_and_initialized():
return
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
dist.barrier()
dist.all_reduce(t)
t = t.tolist()
self.count = int(t[0])
self.total = t[1]
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
return self.total / self.count
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
max=self.max,
value=self.value)
class MetricLogger(object):
def __init__(self, delimiter="\t"):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError("'{}' object has no attribute '{}'".format(
type(self).__name__, attr))
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append(
"{}: {}".format(name, str(meter))
)
return self.delimiter.join(loss_str)
def global_avg(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append(
"{}: {:.4f}".format(name, meter.global_avg)
)
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
for meter in self.meters.values():
meter.synchronize_between_processes()
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, iterable, print_freq, header=None):
i = 0
if not header:
header = ''
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt='{avg:.4f}')
data_time = SmoothedValue(fmt='{avg:.4f}')
space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
log_msg = [
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}'
]
if torch.cuda.is_available():
log_msg.append('max mem: {memory:.0f}')
log_msg = self.delimiter.join(log_msg)
MB = 1024.0 * 1024.0
for obj in iterable:
data_time.update(time.time() - end)
yield obj
iter_time.update(time.time() - end)
if i % print_freq == 0 or i == len(iterable) - 1:
eta_seconds = iter_time.global_avg * (len(iterable) - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if torch.cuda.is_available():
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB))
else:
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time)))
i += 1
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('{} Total time: {} ({:.4f} s / it)'.format(
header, total_time_str, total_time / len(iterable)))
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
def compute_acc(logits, label, reduction='mean'):
ret = (torch.argmax(logits, dim=1) == label).float()
if reduction == 'none':
return ret.detach()
elif reduction == 'mean':
return ret.mean().item()
def compute_n_params(model, return_str=True):
tot = 0
for p in model.parameters():
w = 1
for x in p.shape:
w *= x
tot += w
if return_str:
if tot >= 1e6:
return '{:.1f}M'.format(tot / 1e6)
else:
return '{:.1f}K'.format(tot / 1e3)
else:
return tot
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop('force', False)
if is_master or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_world_size():
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def is_main_process():
return get_rank() == 0
def save_on_master(*args, **kwargs):
if is_main_process():
torch.save(*args, **kwargs)
def init_distributed_mode(args):
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
args.rank = int(os.environ["RANK"])
args.world_size = int(os.environ['WORLD_SIZE'])
args.gpu = int(os.environ['LOCAL_RANK'])
elif 'SLURM_PROCID' in os.environ:
args.rank = int(os.environ['SLURM_PROCID'])
args.gpu = args.rank % torch.cuda.device_count()
else:
print('Not using distributed mode')
args.distributed = False
return
args.distributed = True
torch.cuda.set_device(args.gpu)
args.dist_backend = 'nccl'
print('| distributed init (rank {}, word {}): {}'.format(
args.rank, args.world_size, args.dist_url), flush=True)
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
torch.distributed.barrier()
setup_for_distributed(args.rank == 0)
from fvcore.nn import FlopCountAnalysis, flop_count_str, flop_count_table
from torch import nn
def print_params_and_flops(print_type, model, device, config=None):
model.eval()
if print_type == 'nlvr':
class Wrapper(nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
def forward(self, inputs):
images, text, targets = inputs
return self.model(images, text, targets=targets, train=False)
with torch.no_grad():
wrapper_model = Wrapper(model);
inputs = [torch.randn(2, 3, 384, 384).to(device) ,
['Params and FLOPs test, test params and FLOPs, params and FLOPs test, test params and FLOPs, params and FLOPs test'] * 1,
torch.randint(0, 2, (1,)).to(device)
]
flop = FlopCountAnalysis(wrapper_model, inputs)
print(flop_count_table(flop, max_depth=7, show_param_shapes=True))
print("Total", flop.total() / 1e9)
elif print_type == 'caption':
class Wrapper(nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
def forward(self, inputs):
images, caption = inputs
return self.model(images, caption)
with torch.no_grad():
wrapper_model = Wrapper(model);
inputs = [torch.randn(1, 3, 384, 384).to(device) ,
['a picture of car driving down a road behind a lot of sheep'] * 1
]
flop = FlopCountAnalysis(wrapper_model, inputs)
print(flop_count_table(flop, max_depth=8, show_param_shapes=True))
print("Total", flop.total() / 1e9)
elif print_type == 'vqa':
class Wrapper(nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
def forward(self, inputs):
image, weights, question, answer, n = inputs
return self.model(image, question, answer, train=True, n=n, weights=weights)
with torch.no_grad():
wrapper_model = Wrapper(model);
inputs = [torch.randn(1, 3, 480, 480).to(device) ,
torch.randn(47).to(device),
['where is the yellow pedestrian crossing?', 'how many people are in the photo?', 'where are boats?', 'what is in the window?',
'what color is the road?', 'does the banana need the pillow?', 'do you need a chopstick?', 'what is the man sitting on?', 'who is wearing a white top?',
'what is the man studying?', 'what color is the roof?', 'how many people are in the photo?', 'what is beyond the beach?', 'what is the woman doing to the pizza?',
"what color is the man's shirt?", 'where is the man surfing?', 'what is the person with the knife doing?', 'when was the picture taken of the clock tower?',
'what is blue color?', 'how many people are there?', 'how many people in the picture?', 'who is to the right?', 'what country is shown on the placemat?',
'how many people are in this picture?', 'where is the cat?', 'how many spoons are in the picture?', 'are the names on the scoreboard the names of people?',
'what is the sign?', 'what are the people playing?', 'what is the shoreline?', 'what is on the police officers head?', 'who are eating on the table?'],
['on sign', '1', 'on water', 'cat in window', 'gray', 'no', 'no', 'surfboard', 'tennis player', 'science project', 'attendance list', 'science',
'school projects', 'paper', 'speech', 'no idea', 'gray and green', 'four', 'hills', 'taking picture', 'taking photo', 'photographing it', 'smiling',
's', 'gray', 'in ocean', 'cutting cake', 'early morning', 'umbrella', 'one', 'three', 'man', 'italy', 'sicily', 'italia', 'australia', 'zero',
'on dashboard', '1', 'yes', 'newport beach sacramento', 'no', 'road closed', 'nintendo wii', 'rocks', 'hats', 'no one'],
[1]
]
flop = FlopCountAnalysis(wrapper_model, inputs)
print(flop_count_table(flop, max_depth=8, show_param_shapes=True))
print("Total", flop.total() / 1e9)
elif print_type == 'retrieval':
class Wrapper(nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
def forward(self, inputs):
image, caption, alpha, idx = inputs
return self.model(image, caption, alpha=alpha, idx=idx)
with torch.no_grad():
wrapper_model = Wrapper(model);
inputs = [torch.randn(1, 3, 384, 384).to(device) ,
['car driving down a road behind a lot of sheep'] * 1,
0.0,
torch.randint(1000, 10000, (1,)).to(device)
]
flop = FlopCountAnalysis(wrapper_model, inputs)
print(flop_count_table(flop, max_depth=7, show_param_shapes=True))
print("Total", flop.total() / 1e9)
elif print_type == 'retrieval_clip':
class Wrapper(nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
def forward(self, inputs):
image, text, alpha, idx = inputs
return self.model(image, text, alpha, idx)
with torch.no_grad():
wrapper_model = Wrapper(model);
inputs = [torch.randn(1, 3, config['image_size'], config['image_size']).to(device) ,
["car driving down a road behind a lot of sheep"],
0.0,
torch.full((1, ),-100).to(device)
]
flop = FlopCountAnalysis(wrapper_model, inputs)
print(flop_count_table(flop, max_depth=7, show_param_shapes=True))
print("Total", flop.total() / 1e9)
model.reset_queue()
model.train()