-
Notifications
You must be signed in to change notification settings - Fork 0
/
image_client.py
executable file
·608 lines (525 loc) · 22.7 KB
/
image_client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
#!/usr/bin/env python
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import argparse
import datetime
from functools import partial
import os
import sys
import cv2
from PIL import Image
import numpy as np
from attrdict import AttrDict
import tritonclient.grpc as grpcclient
import tritonclient.grpc.model_config_pb2 as mc
import tritonclient.http as httpclient
from tritonclient.utils import InferenceServerException
from tritonclient.utils import triton_to_np_dtype
from pprint import pprint
from visualize import visualize_detections_live_triton
if sys.version_info >= (3, 0):
import queue
else:
import Queue as queue
request_times = {}
class UserData:
def __init__(self):
self._completed_requests = queue.Queue()
def gstreamer_pipeline(
capture_width=320,
capture_height=200,
display_width=320,
display_height=200,
framerate=30,
flip_method=0,
):
return (
"nvarguscamerasrc ! "
"video/x-raw(memory:NVMM), "
"width=(int)%d, height=(int)%d, "
"format=(string)NV12, framerate=(fraction)%d/1 ! "
"nvvidconv flip-method=%d ! "
"video/x-raw, width=(int)%d, height=(int)%d, format=(string)BGRx ! "
"videoconvert ! "
"video/x-raw, format=(string)BGR ! appsink"
% (
capture_width,
capture_height,
framerate,
flip_method,
display_width,
display_height,
)
)
# Callback function used for async_stream_infer()
def completion_callback(user_data, result, error):
# passing error raise and handling out
#print("BAKED RESPONSE: ", result.get_response().id)
user_data._completed_requests.put((result, error))
FLAGS = None
def parse_model(model_metadata, model_config):
"""
Check the configuration of a model to make sure it meets the
requirements for an image classification network (as expected by
this client)
"""
# Summarizing model
pprint(f"Model inputs: {model_metadata.inputs}")
pprint(f"Model outputs: {model_metadata.outputs}")
if len(model_metadata.inputs) != 1:
raise Exception("expecting 1 input, got {}".format(
len(model_metadata.inputs)))
#if len(model_metadata.outputs) != 1:
# raise Exception("expecting 1 output, got {}".format(
# len(model_metadata.outputs)))
if len(model_config.input) != 1:
raise Exception(
"expecting 1 input in model configuration, got {}".format(
len(model_config.input)))
input_metadata = model_metadata.inputs[0]
input_config = model_config.input[0]
output_metadata = model_metadata.outputs[0]
if output_metadata.datatype != "FP32":
raise Exception("expecting output datatype to be FP32, model '" +
model_metadata.name + "' output type is " +
output_metadata.datatype)
# Output is expected to be a vector. But allow any number of
# dimensions as long as all but 1 is size 1 (e.g. { 10 }, { 1, 10
# }, { 10, 1, 1 } are all ok). Ignore the batch dimension if there
# is one.
output_batch_dim = (model_config.max_batch_size > 0)
non_one_cnt = 0
for dim in output_metadata.shape:
if output_batch_dim:
output_batch_dim = False
#elif dim > 1:
# non_one_cnt += 1
# if non_one_cnt > 1:
# raise Exception("expecting model output to be a vector")
# Model input must have 3 dims, either CHW or HWC (not counting
# the batch dimension), either CHW or HWC
input_batch_dim = (model_config.max_batch_size > 0)
expected_input_dims = 3 + (1 if input_batch_dim else 0)
if len(input_metadata.shape) != expected_input_dims:
raise Exception(
"expecting input to have {} dimensions, model '{}' input has {}".
format(expected_input_dims, model_metadata.name,
len(input_metadata.shape)))
if type(input_config.format) == str:
FORMAT_ENUM_TO_INT = dict(mc.ModelInput.Format.items())
input_config.format = FORMAT_ENUM_TO_INT[input_config.format]
if ((input_config.format != mc.ModelInput.FORMAT_NCHW) and
(input_config.format != mc.ModelInput.FORMAT_NHWC)):
raise Exception("unexpected input format " +
mc.ModelInput.Format.Name(input_config.format) +
", expecting " +
mc.ModelInput.Format.Name(mc.ModelInput.FORMAT_NCHW) +
" or " +
mc.ModelInput.Format.Name(mc.ModelInput.FORMAT_NHWC))
if input_config.format == mc.ModelInput.FORMAT_NHWC:
h = input_metadata.shape[1 if input_batch_dim else 0]
w = input_metadata.shape[2 if input_batch_dim else 1]
c = input_metadata.shape[3 if input_batch_dim else 2]
else:
c = input_metadata.shape[1 if input_batch_dim else 0]
h = input_metadata.shape[2 if input_batch_dim else 1]
w = input_metadata.shape[3 if input_batch_dim else 2]
return (model_config.max_batch_size, input_metadata.name,
output_metadata.name, c, h, w, input_config.format,
input_metadata.datatype)
def preprocess(img, format, dtype, c, h, w, scaling, protocol):
"""
Pre-process an image to meet the size, type and format
requirements specified by the parameters.
"""
# np.set_printoptions(threshold='nan')
if c == 1:
sample_img = img.convert('L')
else:
sample_img = img.convert('RGB')
resized_img = sample_img.resize((w, h), Image.BILINEAR)
resized = np.array(resized_img)
if resized.ndim == 2:
resized = resized[:, :, np.newaxis]
npdtype = triton_to_np_dtype(dtype)
typed = resized.astype(npdtype)
if scaling == 'INCEPTION':
scaled = (typed / 127.5) - 1
elif scaling == 'VGG':
if c == 1:
scaled = typed - np.asarray((128,), dtype=npdtype)
else:
scaled = typed - np.asarray((123, 117, 104), dtype=npdtype)
else:
scaled = typed
# Swap to CHW if necessary
if format == mc.ModelInput.FORMAT_NCHW:
ordered = np.transpose(scaled, (2, 0, 1))
else:
ordered = scaled
# Channels are in RGB order. Currently model configuration data
# doesn't provide any information as to other channel orderings
# (like BGR) so we just assume RGB.
return ordered
def postprocess(results, output_name, batch_size, batching):
"""
Post-process results to show classifications.
"""
output_array = results.as_numpy(output_name)
#if len(output_array) != batch_size:
# raise Exception("expected {} results, got {}".format(
# batch_size, len(output_array)))
# Include special handling for non-batching models
for results in output_array:
print(results)
#if not batching:
# results = [results]
#for result in results:
# if output_array.dtype.type == np.object_:
# cls = "".join(chr(x) for x in result).split(':')
# else:
# cls = result.split(':')
# print(" {} ({}) = {}".format(cls[0], cls[1], cls[2]))
def requestGenerator(batched_image_data, input_name, output_name, dtype, FLAGS):
protocol = FLAGS.protocol.lower()
if protocol == "grpc":
client = grpcclient
else:
client = httpclient
# Set the input data
inputs = [client.InferInput(input_name, batched_image_data.shape, dtype)]
inputs[0].set_data_from_numpy(batched_image_data)
# outputs = [
# client.InferRequestedOutput(output_name, class_count=FLAGS.classes)
# ]
outputs = [
client.InferRequestedOutput("detection_boxes"), #, class_count=FLAGS.classes),
client.InferRequestedOutput("detection_scores") #, class_count=FLAGS.classes)
]
yield inputs, outputs, FLAGS.model_name, FLAGS.model_version
def get_latest(Q):
"""Getting latest element from queue"""
element = (None, None)
while not Q.empty():
element = Q.get(block=False)
return element
def convert_http_metadata_config(_metadata, _config):
_model_metadata = AttrDict(_metadata)
_model_config = AttrDict(_config)
return _model_metadata, _model_config
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-v',
'--verbose',
action="store_true",
required=False,
default=False,
help='Enable verbose output')
parser.add_argument('-a',
'--async',
dest="async_set",
action="store_true",
required=False,
default=False,
help='Use asynchronous inference API')
parser.add_argument('--streaming',
action="store_true",
required=False,
default=False,
help='Use streaming inference API. ' +
'The flag is only available with gRPC protocol.')
parser.add_argument('-m',
'--model-name',
type=str,
required=True,
help='Name of model')
parser.add_argument(
'-x',
'--model-version',
type=str,
required=False,
default="",
help='Version of model. Default is to use latest version.')
parser.add_argument('-b',
'--batch-size',
type=int,
required=False,
default=1,
help='Batch size. Default is 1.')
parser.add_argument('-c',
'--classes',
type=int,
required=False,
default=1,
help='Number of class results to report. Default is 1.')
parser.add_argument(
'-s',
'--scaling',
type=str,
choices=['NONE', 'INCEPTION', 'VGG'],
required=False,
default='NONE',
help='Type of scaling to apply to image pixels. Default is NONE.')
parser.add_argument('-u',
'--url',
type=str,
required=False,
default='localhost:8000',
help='Inference server URL. Default is localhost:8000.')
parser.add_argument('-i',
'--protocol',
type=str,
required=False,
default='HTTP',
help='Protocol (HTTP/gRPC) used to communicate with ' +
'the inference service. Default is HTTP.')
parser.add_argument('image_filename',
type=str,
nargs='?',
default=None,
help='Input image / Input folder.')
FLAGS = parser.parse_args()
if FLAGS.streaming and FLAGS.protocol.lower() != "grpc":
raise Exception("Streaming is only allowed with gRPC protocol")
try:
if FLAGS.protocol.lower() == "grpc":
# Create gRPC client for communicating with the server
triton_client = grpcclient.InferenceServerClient(
url=FLAGS.url, verbose=FLAGS.verbose)
else:
# Specify large enough concurrency to handle the
# the number of requests.
concurrency = 20 if FLAGS.async_set else 1
triton_client = httpclient.InferenceServerClient(
url=FLAGS.url, verbose=FLAGS.verbose, concurrency=concurrency)
except Exception as e:
print("client creation failed: " + str(e))
sys.exit(1)
# Make sure the model matches our requirements, and get some
# properties of the model that we need for preprocessing
try:
model_metadata = triton_client.get_model_metadata(
model_name=FLAGS.model_name, model_version=FLAGS.model_version)
print("Model Metadata:", model_metadata)
except InferenceServerException as e:
print("failed to retrieve the metadata: " + str(e))
sys.exit(1)
try:
model_config = triton_client.get_model_config(
model_name=FLAGS.model_name, model_version=FLAGS.model_version)
print("Model Config:", model_config)
except InferenceServerException as e:
print("failed to retrieve the config: " + str(e))
sys.exit(1)
if FLAGS.protocol.lower() == "grpc":
model_config = model_config.config
else:
model_metadata, model_config = convert_http_metadata_config(
model_metadata, model_config)
max_batch_size, input_name, output_name, c, h, w, format, dtype = parse_model(
model_metadata, model_config)
print("model parameters ", max_batch_size, input_name, output_name, c, h, w, format, dtype)
filenames = []
if os.path.isdir(FLAGS.image_filename):
filenames = [
os.path.join(FLAGS.image_filename, f)
for f in os.listdir(FLAGS.image_filename)
if os.path.isfile(os.path.join(FLAGS.image_filename, f))
]
filenames = [name for name in filenames if name.endswith(".jpg")]
else:
filenames = [
FLAGS.image_filename,
]
filenames.sort()
# Preprocess the images into input data according to model
# requirements
image_data = []
for filename in filenames:
img = Image.open(filename)
image_data.append(
preprocess(img, format, dtype, c, h, w, FLAGS.scaling,
FLAGS.protocol.lower()))
# Send requests of FLAGS.batch_size images. If the number of
# images isn't an exact multiple of FLAGS.batch_size then just
# start over with the first images until the batch is filled.
requests = []
responses = []
result_filenames = []
request_ids = []
image_idx = 0
last_request = False
user_data = UserData()
# Holds the handles to the ongoing HTTP async requests.
async_requests = []
sent_count = 0
rec_count = 0
if FLAGS.streaming:
triton_client.start_stream(partial(completion_callback, user_data))
print(gstreamer_pipeline(flip_method=2))
cap = cv2.VideoCapture(gstreamer_pipeline(flip_method=0), cv2.CAP_GSTREAMER)
if cap.isOpened():
window_handle = cv2.namedWindow("CSI Camera", cv2.WINDOW_AUTOSIZE)
# Window
# only works with batch_size 1 from here
frame_id = 0
img_annotated = None
while cv2.getWindowProperty("CSI Camera", 0) >= 0:
repeated_image_data = []
# for idx in range(FLAGS.batch_size):
# repeated_image_data.append(image_data[image_idx])
# image_idx = (image_idx + 1) % len(image_data)
# if image_idx == 0:
# last_request = True
#
# if max_batch_size > 0:
# batched_image_data = np.stack(repeated_image_data, axis=0)
# else:
# batched_image_data = repeated_image_data[0]
t_cap = datetime.datetime.now()
ret_val, img = cap.read()
# img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# resize
img = cv2.resize(img, (320, 320))
# type casting
# img = np.float32(img)
# connect with old implementation
batched_image_data = np.array([img], dtype="float32")
t0 = datetime.datetime.now()
# Send request
try:
if sent_count <= rec_count + 5:
for inputs, outputs, model_name, model_version in requestGenerator(
batched_image_data, input_name, output_name, dtype, FLAGS):
sent_count += 1
if FLAGS.streaming:
print(f"Sending request {sent_count}")
request_times[sent_count] = {"send": datetime.datetime.now(),
"rec": None}
triton_client.async_stream_infer(
FLAGS.model_name,
inputs,
request_id=str(sent_count),
model_version=FLAGS.model_version,
outputs=outputs)
elif FLAGS.async_set:
if FLAGS.protocol.lower() == "grpc":
triton_client.async_infer(
FLAGS.model_name,
inputs,
partial(completion_callback, user_data),
request_id=str(sent_count),
model_version=FLAGS.model_version,
outputs=outputs)
else:
async_requests.append(
triton_client.async_infer(
FLAGS.model_name,
inputs,
request_id=str(sent_count),
model_version=FLAGS.model_version,
outputs=outputs))
else:
responses.append(
triton_client.infer(FLAGS.model_name,
inputs,
request_id=str(sent_count),
model_version=FLAGS.model_version,
outputs=outputs))
except InferenceServerException as e:
print("inference failed: " + str(e))
if FLAGS.streaming:
triton_client.stop_stream()
sys.exit(1)
t1 = datetime.datetime.now()
#print(f"inf time: {(t1 - t0).total_seconds()}")
#print(responses[-1].get_response().id)
try:
print("qsize", user_data._completed_requests.qsize())
(results, error) = user_data._completed_requests.get(block=False)
#(results, error) = get_latest(user_data._completed_requests)
t2 = datetime.datetime.now()
#print(f"ret time: {(t2 - t1).total_seconds()}")
resp_id = int(results.get_response().id)
print("Retrieved response with id: ", resp_id)
request_times[resp_id]["rec"] = datetime.datetime.now()
print(f"Framerate for response {resp_id} ", 1/(request_times[resp_id]["rec"] - request_times[resp_id]["send"]).total_seconds())
rec_count += 1
except Exception as e:
results = None
print(e)
t2 = datetime.datetime.now()
# try:
if results is not None:
img_annotated = visualize_detections_live_triton(img, results.as_numpy("detection_boxes"), results.as_numpy("detection_scores"), min_score=0.25)
else:
if img_annotated is None:
img_annotated = img
# except Exception as e:
# print(e)
# img_annotated = img
cv2.imshow("CSI Camera", np.asarray(img_annotated))
t3 = datetime.datetime.now()
print(f"show time: {(t3 - t2).total_seconds()}")
k = cv2.waitKey(1) & 0xFF
if k == ord("q"):
# ESC pressed
print("'q' was hit, closing...")
break
print(f"framerate: {1/(t3 - t_cap).total_seconds()}")
cap.release()
cv2.destroyAllWindows()
if FLAGS.streaming:
triton_client.stop_stream()
# if FLAGS.protocol.lower() == "grpc":
# if FLAGS.streaming or FLAGS.async_set:
# processed_count = 0
# while processed_count < sent_count:
# (results, error) = user_data._completed_requests.get()
# processed_count += 1
# if error is not None:
# print("inference failed: " + str(error))
# sys.exit(1)
# responses.append(results)
# else:
# if FLAGS.async_set:
# # Collect results from the ongoing async requests
# # for HTTP Async requests.
# for async_request in async_requests:
# responses.append(async_request.get_result())
#
# for response in responses:
# # print(response)
# if FLAGS.protocol.lower() == "grpc":
# this_id = response.get_response().id
# else:
# this_id = response.get_response()["id"]
# # print("Request {}, batch size {}".format(this_id, FLAGS.batch_size))
# print(response.get_response().id)
# # # postprocess(response, output_name, FLAGS.batch_size, max_batch_size > 0)
# # print(response.as_numpy("detection_scores"))
# # print(response.as_numpy("detection_boxes"))
print("PASS")