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• A scientific model has high validity if:

- It is consistent with a wide range of  
previously gathered data.

- It can predict the results of many  
future experiments.
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before pre, whereas positive !t values correspond to pre before
post. For each !t, the experiment was repeated at 1 Hz until
saturation, typically requiring about 20 pairings. Even in the
saturated state, W may oscillate slowly about a fixed level, and
accordingly, the W" levels shown in Fig. 4 were generated by
averaging W over a 1-s period. We stress that this model does
not yield depression in pre-post scenarios with large inter-
stimulus intervals, as occurs in previously published models
based on calcium levels (Abarbanel et al. 2003; Karmarkar and
Buonomano 2002; Shouval et al. 2002).

We can understand how the detector system distinguishes
different stimulation scenarios by examining the responses of
its components to the corresponding calcium signals. Figure 5
summarizes the responses of some components of our model
calcium detector system to single spike pairs in the pre-post
stimulation scenarios after transient effects dependent on initial
conditions have decayed away. Figure 5A shows the time
courses of calcium in the pre-10-post and pre-40-post cases, as
in Fig. 1A. In the model, increases in the calcium level detector
P lead to growth of the readout variable W, corresponding to
potentiation, and the responses of P to these two scenarios are
shown in Fig. 5C. Only the larger response is sufficient to
cause an observable increase in W. Figure 5B shows a magni-
fied view of the calcium time course from the pre-40-post
simulation. In this case, Fig. 5D shows that, in our model, the
depression agents do not build up sufficiently to induce de-
pression. Similar results occur for larger interstimulus intervals
(see Fig. 4). The mechanism in our model that prevents
depression in the pre-40-post case is the presence of the veto,
which is activated by moderate calcium levels. In pre-40-post,
there is sufficient calcium influx to activate the veto for a
certain period, during which it blocks the build-up of the
intermediate depression components of the model. When the
veto wears off, there is still enough calcium to cause some
increase of the intermediate depression agents, but they cannot
increase sufficiently to cause depression (Fig. 5D).

Figure 6 shows the differential activation of the depression
components of our model under post-10-pre and post-60-pre
protocols. We can observe in Fig. 6, C and D, that the
depression agents respond to the calcium time course on
different time scales. In Fig. 6C, corresponding to post-10-pre,
B (dash-dotted) crosses the threshold (dashed line) to activate
D. Figure 6E shows the response of D induced when B crosses
the threshold by the amount shown in Fig. 6C. This response of
D leads to strong depression. Figure 6D shows that the valley
between the calcium peaks induced by pre- and postsynaptic
stimulation, respectively (Fig. 6B, arrow), suppresses the B
response in the post-60-pre case. The amount by which B
crosses threshold in post-60-pre leads to a weak D response,
shown in Fig. 6F, and only weak depression occurs. Note that
the dashed line in Fig. 6, E and F, corresponds to D # 0.08,
given as a reference since these two figures are on different
scales. Note also that since the veto is not activated in these
post-pre scenarios, it is not shown in Fig. 6, C and D.

An examination of the calcium time courses in Figs. 1, C and
D, and 7, A1 and B1, shows that small but distinct differences
in the calcium profiles can be observed in the triplet pre-post-
pre and post-pre-post triplet scenarios with 10-ms interstimulus
intervals, relative to the pre-10-post case. Specifically, the
pre-post-pre paradigm yields an additional calcium influx
through NMDA channels due to the second presynaptic stim-
ulation, which leads to the prolonged decay of calcium in Figs.
1C (arrow) and 7A1. In the post-pre-post case, the pre-post
interaction is preceded by a calcium influx through VGCCs,
and the pre-post itself leads to a slightly boosted calcium
influx, relative to pre-10-post, as seen in Fig. 1D. As seen in
Fig. 7D, the post-pre-post case activates the potentiation com-
ponent P in our model but not the depression component D,
whereas post-10-pre alone induces depression (Figs. 4 and 6).
Thus post-pre-post leads to potentiation (Fig. 7C), as seen
experimentally (Fig. 2). Depression is blocked in the post-pre-

FIG. 4. Plasticity outcomes from spike pair simulations and experiments
with interspike intervals !t # tpost $ tpre. Simulations were performed with !t
ranging from –100 to 100, in increments of 2 ms. Solid curve interpolates
resulting saturation levels of W". Experimental data points (Bi and Poo 1998),
marked with circles, represent percent changes in excitatory postsynaptic
currents.

FIG. 5. Outcomes of single pre-post pairings show the mechanisms under-
lying pre-post plasticity. A: calcium time courses from pre-10-post (solid) and
pre-40-post (dashed), as in Fig. 1A. B: magnified view of the calcium time
course from pre-40-post from A. C: responses of the potentiation agent P to
pre-10-post (solid) and pre-40-post (dashed) from the same initial level. D:
responses of depression agents A (thick solid), B (dash-dotted), and the veto
variable V (thin solid) to pre-40-post. Activation of V suppresses the response
of B to the 2nd peak of A. As a result, the level of B fails to cross the threshold
(dashed line) to activate the variable D and no depression occurs.
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Typically, we make only informal arguments 
about a model’s explanatory power.
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And there is a huge amount of data out there now.  
Informal validation is becoming increasingly difficult!
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• This leaves the field with an unclear view of:

• What has already been explained.  

• What needs explaining. 

• Needed: a framework for validating scientific 
models, based on established techniques for 
formally validating software.
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• Takes a function, f, that maps inputs of type A 
to outputs of type B.  

• f passes the test if and only if f(a) in [blow,bhigh]. 
 

• [blow,bhigh] are the passing criteria.   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SCIENTIFIC UNIT TESTS

• A scientific model is just a function that takes 
observations as inputs and produces predictions 
as output. 

• The observations include metadata about how 
they were obtained, to direct the model.   

• Example: A complete model of a cerebellar 
Purkinje cell should produce spikes that, given a 
specified description of the stimulus, match 
physiologically observed shapes, rates, interval 
distributions, etc.  
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• How to interface with a wide range of model 
types, languages, and goals?  

• How to minimize development time for 
writing model validation tests?  

• How to adjudicate whether a test score really 
captures the functionality it claims to test?  
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model types, languages, and goals?  

 
A: Enumerate the capabilities of models.
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SCIUNIT: CAPABILITIES

Test I need you to have a soma, to receive somatic current 
injection, and to produce action potentials… can you do that?  

Model1 Sorry, I’m a non-spiking model.  


I cannot produce action potentials.   

Model2 I can do all those things.

Test Let’s dance!  
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Test
OK, here are some observations.  



Do what you said you could do with 


them; then let me know your prediction.    

Model2 Got it!  Here it goes… CAPABILITY ERROR

Model2

Liar!  You said you could receive 
somatic current injection!  Test

I can!  I just forgot to 
implement it.  Give me a minute.
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SCIUNIT: CAPABILITIES

OK, I’m ready, hit me up again.  Model2

OK, here are those observations again.  


I’m calling your methods now.  

Model2 It’s working!  … here’s the 
prediction.  

Test

Thanks, hold on … hmmm, your 
prediction needs serious work.  Test
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•Every capability inherits from sciunit.Capability  

•Every capability is designed by a community of modelers and testers.   

•Capabilities are implemented by those who understand the model being tested.  
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•SciUnit models declare their capabilities via inheritance.  

•SciUnit models implement capabilities to match the design  
of the underlying real model.   
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•Capabilities can be built up from other capabilities via inheritance.  

•Previously unconsidered capabilities can be added easily.  
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•Auxiliary methods (relying on the core methods) are available  
to accelerate the workflow.  
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• A test class is a subclass of sciunit.Test

• Interacts with models only through 
capabilities, in order to extract a prediction.

• Compares that prediction with observed 
data.  

• Returns a score indicating agreement.

• A specific test is an instance of that class, 
parameterized by the observed data. 

• Tests are inherently subjective. 
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• The constructor and attributes tell us:
• What the test needs in order to be parameterized.
• What capabilities it will make use of.
• What kind of score it will return.  
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• Check the observation.

• Coax a prediction  
from the model.

• Produce an indicator of  
model/data agrrement.  

• The sciunit.Test base class has a judge method which takes a model,  
checks capabilties, and invokes all of the above to return a score.  
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SCIUNIT: TESTS
“Your test sucks.  Why would you think that was a fair comparison


to the data?  I could totally do better!”

Fork it!  



SCIUNIT: SCORES



SCIUNIT: SCORES
• BooleanScore [True (Pass) or False (Fail)]



SCIUNIT: SCORES
• BooleanScore [True (Pass) or False (Fail)]



SCIUNIT: SCORES
• BooleanScore [True (Pass) or False (Fail)]

• PercentScore [0 - 100%]



SCIUNIT: SCORES
• BooleanScore [True (Pass) or False (Fail)]

• PercentScore [0 - 100%]



SCIUNIT: SCORES
• BooleanScore [True (Pass) or False (Fail)]

• PercentScore [0 - 100%]

• ZScore (-∞, ∞)



SCIUNIT: SCORES
• BooleanScore [True (Pass) or False (Fail)]

• PercentScore [0 - 100%]

• ZScore (-∞, ∞)



SCIUNIT: SCORES
• BooleanScore [True (Pass) or False (Fail)]

• PercentScore [0 - 100%]

• ZScore (-∞, ∞)

• FloatScore (-∞, ∞)



SCIUNIT: SCORES
• BooleanScore [True (Pass) or False (Fail)]

• PercentScore [0 - 100%]

• ZScore (-∞, ∞)

• FloatScore (-∞, ∞)



SCIUNIT: SCORES
• BooleanScore [True (Pass) or False (Fail)]

• PercentScore [0 - 100%]

• ZScore (-∞, ∞)

• FloatScore (-∞, ∞)

• PositiveIntegerScore [1, ∞)



SCIUNIT: SCORES
• BooleanScore [True (Pass) or False (Fail)]

• PercentScore [0 - 100%]

• ZScore (-∞, ∞)

• FloatScore (-∞, ∞)

• PositiveIntegerScore [1, ∞)



SCIUNIT: SCORES
• BooleanScore [True (Pass) or False (Fail)]

• PercentScore [0 - 100%]

• ZScore (-∞, ∞)

• FloatScore (-∞, ∞)

• PositiveIntegerScore [1, ∞)

• PValueScore [0.0 - 1.0]



SCIUNIT: SCORES
• BooleanScore [True (Pass) or False (Fail)]

• PercentScore [0 - 100%]

• ZScore (-∞, ∞)

• FloatScore (-∞, ∞)

• PositiveIntegerScore [1, ∞)

• PValueScore [0.0 - 1.0]



SCIUNIT: SCORES
• BooleanScore [True (Pass) or False (Fail)]

• PercentScore [0 - 100%]

• ZScore (-∞, ∞)

• FloatScore (-∞, ∞)

• PositiveIntegerScore [1, ∞)

• PValueScore [0.0 - 1.0]



SCIUNIT: SCORES
• BooleanScore [True (Pass) or False (Fail)]

• PercentScore [0 - 100%]

• ZScore (-∞, ∞)

• FloatScore (-∞, ∞)

• PositiveIntegerScore [1, ∞)

• PValueScore [0.0 - 1.0]



SCIUNIT: SCORES
• BooleanScore [True (Pass) or False (Fail)]

• PercentScore [0 - 100%]

• ZScore (-∞, ∞)

• FloatScore (-∞, ∞)

• PositiveIntegerScore [1, ∞)

• PValueScore [0.0 - 1.0]



SCIUNIT: SCORES
• BooleanScore [True (Pass) or False (Fail)]

• PercentScore [0 - 100%]

• ZScore (-∞, ∞)

• FloatScore (-∞, ∞)

• PositiveIntegerScore [1, ∞)

• PValueScore [0.0 - 1.0]

{



SCIUNIT: SCORES
• BooleanScore [True (Pass) or False (Fail)]

• PercentScore [0 - 100%]

• ZScore (-∞, ∞)

• FloatScore (-∞, ∞)

• PositiveIntegerScore [1, ∞)

• PValueScore [0.0 - 1.0]

{
•Conversion between scores is also possible.  



SCIUNIT: SCORES
• BooleanScore [True (Pass) or False (Fail)]

• PercentScore [0 - 100%]

• ZScore (-∞, ∞)

• FloatScore (-∞, ∞)

• PositiveIntegerScore [1, ∞)

• PValueScore [0.0 - 1.0]

{
•Conversion between scores is also possible.  

• p < 0.01 → True; else False



SCIUNIT: SCORES
• BooleanScore [True (Pass) or False (Fail)]

• PercentScore [0 - 100%]

• ZScore (-∞, ∞)

• FloatScore (-∞, ∞)

• PositiveIntegerScore [1, ∞)

• PValueScore [0.0 - 1.0]

{
•Conversion between scores is also possible.  

• p < 0.01 → True; else False



SCIUNIT: SCORES
• BooleanScore [True (Pass) or False (Fail)]

• PercentScore [0 - 100%]

• ZScore (-∞, ∞)

• FloatScore (-∞, ∞)

• PositiveIntegerScore [1, ∞)

• PValueScore [0.0 - 1.0]

{
•Conversion between scores is also possible.  

• p < 0.01 → True; else False

• Scores have attributes describing their provenance:



SCIUNIT: SCORES
• BooleanScore [True (Pass) or False (Fail)]

• PercentScore [0 - 100%]

• ZScore (-∞, ∞)

• FloatScore (-∞, ∞)

• PositiveIntegerScore [1, ∞)

• PValueScore [0.0 - 1.0]

{
•Conversion between scores is also possible.  

• p < 0.01 → True; else False

• Scores have attributes describing their provenance:
• Test



SCIUNIT: SCORES
• BooleanScore [True (Pass) or False (Fail)]

• PercentScore [0 - 100%]

• ZScore (-∞, ∞)

• FloatScore (-∞, ∞)

• PositiveIntegerScore [1, ∞)

• PValueScore [0.0 - 1.0]

{
•Conversion between scores is also possible.  

• p < 0.01 → True; else False

• Scores have attributes describing their provenance:
• Test
• Model



SCIUNIT: SCORES
• BooleanScore [True (Pass) or False (Fail)]

• PercentScore [0 - 100%]

• ZScore (-∞, ∞)

• FloatScore (-∞, ∞)

• PositiveIntegerScore [1, ∞)

• PValueScore [0.0 - 1.0]

{
•Conversion between scores is also possible.  

• p < 0.01 → True; else False

• Scores have attributes describing their provenance:
• Test
• Model
• Related data (for further analysis)



SCIUNIT: SCORES
• BooleanScore [True (Pass) or False (Fail)]

• PercentScore [0 - 100%]

• ZScore (-∞, ∞)

• FloatScore (-∞, ∞)

• PositiveIntegerScore [1, ∞)

• PValueScore [0.0 - 1.0]

{
•Conversion between scores is also possible.  

• p < 0.01 → True; else False

• Scores have attributes describing their provenance:
• Test
• Model
• Related data (for further analysis)



SCIUNIT: TEST SUITES



SCIUNIT: TEST SUITES
• Test suites are collections of tests organized around a theme.   
 



SCIUNIT: TEST SUITES
• Test suites are collections of tests organized around a theme.   
 

•Each test examines one aspect of the model’s validity.   



SCIUNIT: TEST SUITES
• Test suites are collections of tests organized around a theme.   
 

•Each test examines one aspect of the model’s validity.   

• e.g. each test could examine the response of a neuron model to one 
amplitude or waveform of injected current.   



SCIUNIT: TEST SUITES
• Test suites are collections of tests organized around a theme.   
 

•Each test examines one aspect of the model’s validity.   

• e.g. each test could examine the response of a neuron model to one 
amplitude or waveform of injected current.   

• i.e. each test could correspond to the same test class,  
but instantiated with different parameter sets.



SCIUNIT: TEST SUITES
• Test suites are collections of tests organized around a theme.   
 

•Each test examines one aspect of the model’s validity.   

• e.g. each test could examine the response of a neuron model to one 
amplitude or waveform of injected current.   

• i.e. each test could correspond to the same test class,  
but instantiated with different parameter sets.



SCIUNIT: TEST SUITES
• Test suites are collections of tests organized around a theme.   
 

•Each test examines one aspect of the model’s validity.   

• e.g. each test could examine the response of a neuron model to one 
amplitude or waveform of injected current.   

• i.e. each test could correspond to the same test class,  
but instantiated with different parameter sets.



SCIUNIT: WORKFLOW



SCIUNIT: WORKFLOW



VISUALIZING VALIDITY



VISUALIZING VALIDITY



VISUALIZING VALIDITY



VISUALIZING VALIDITY

Models



VISUALIZING VALIDITY

Models

 

Tests



VISUALIZING VALIDITY

Models Goodness-of-Fit

 

Tests



VISUALIZING VALIDITY

Models Goodness-of-Fit

 

Tests

Test Suite 



VISUALIZING VALIDITY

 



VISUALIZING VALIDITY

 

TestSuite([SunspotTest(cycle_data)	
  for	
  cycle_data	
  in	
  all_cycle_data])	
  
.judge([OhlsMethod,	
  FeynmansMethod,	
  ThompsonsMethod]).view()



VISUALIZING VALIDITY
TestSuite([SunspotTest(cycle_data)	
  for	
  cycle_data	
  in	
  all_cycle_data])	
  
.judge([OhlsMethod,	
  FeynmansMethod,	
  ThompsonsMethod]).view()



• When someone develops a new model (or 
technique), we add a row to the validation table.  

VISUALIZING VALIDITY
TestSuite([SunspotTest(cycle_data)	
  for	
  cycle_data	
  in	
  all_cycle_data])	
  
.judge([OhlsMethod,	
  FeynmansMethod,	
  ThompsonsMethod]).view()



• When someone develops a new model (or 
technique), we add a row to the validation table.  

• Everyone immediately sees where it stands with 
respect to all previously test-encoded data!

VISUALIZING VALIDITY
TestSuite([SunspotTest(cycle_data)	
  for	
  cycle_data	
  in	
  all_cycle_data])	
  
.judge([OhlsMethod,	
  FeynmansMethod,	
  ThompsonsMethod]).view()



VISUALIZING VALIDITY
TestSuite([SunspotTest(cycle_data)	
  for	
  cycle_data	
  in	
  all_cycle_data])	
  
.judge([OhlsMethod,	
  FeynmansMethod,	
  ThompsonsMethod]).view()



VISUALIZING VALIDITY
TestSuite([SunspotTest(cycle_data)	
  for	
  cycle_data	
  in	
  all_cycle_data])	
  
.judge([OhlsMethod,	
  FeynmansMethod,	
  ThompsonsMethod]).view()

• When new experimental data is produced, we 
add a new column. 



VISUALIZING VALIDITY
TestSuite([SunspotTest(cycle_data)	
  for	
  cycle_data	
  in	
  all_cycle_data])	
  
.judge([OhlsMethod,	
  FeynmansMethod,	
  ThompsonsMethod]).view()

• When new experimental data is produced, we 
add a new column. 

• Everyone immediately sees how valid all existing 
models are against it!    
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•A big challenge is handling different 
implementation languages with a common 
system.

•We must be able to express complex model 
capabilities and test requirements.

•We must be able to handle large, diverse data 
sets and complex models.

•We aim to solve these with  
unit testing philosophy + domain standards
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• SciUnit capability classes crafted to span the things one 

would ask single cell neurophyiology models to do.

- Helper functions for implementation of these capabilities 
to match common model/simulation platforms 
(neuroConstruct)

• SciUnit model classes that implement these capabilities as 
well as platform-specific model instantiation.  

• SciUnit test classes that can be initialized with human-
readable observation metadata.

- Observed data for test parameterization retrieved 
automatically from trusted data repositories.  
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NEURONUNIT: CAPABILITIES
• What capabilities might single neuron models have?

• How these should be organized to reflect the functions one 
might call in order to interact with these models?

• Community input requested.  

• Capability method arguments, return values, and provided 
implementations ought to reflect standards in analysis of 
neuron physiology data.  
 

- NumPy/SciPy (http://www.numpy.org/)
- NEO (http://neuralensemble.org/neo/)
- NeuroTools (http://neuralensemble.org/NeuroTools/)

- Being replaced by ElectroPhysiology Analysis Toolkit 
(ElePhAnT)
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NEURONUNIT: TESTS

• What kinds of model predictions might a neuron modeler 
want to get right?

• Which observations can be help evaluate those predictions?

• How can we avoid hand-selecting observations?   

• SciUnit test classes to automate the parameterization of tests 
using standard repositories of curated observations.  
 

- Morphological: NeuroMorpho (http://neuromorpho.org)
- Electrical (whole neuron): NeuroElectro (http://neuroelectro.org)
- Electrical (ion channel): ChannelPedia (http://channelpedia.epfl.ch/)
- Synaptic: ?
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• What kinds of models might people want to test?

• How can we maximally reuse SciUnit model classes to apply  
to the largest number of actual models?

• How can we support such a large number of model 
languages and simulation environments?   

• Standards:   
 
- Model description: NeuroML (http://neuroml.org)
- Simulation description: SED-ML (http://sed-ml.org)
- Simulation execution: … whatever reads NeuroML 

(neuroConstruct, NEURON, etc.)
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• An example model from Open Source Brain (http://

www.opensourcebrain.org)

- Model description given in NeuroML.

- Simulation description given in neuroConstruct.

- Recapitulates (De Schutter and Bower, 1994).  

… followed by many interactions with this model via  
its capabilities, in the course of test execution.

http://www.opensourcebrain.org
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•Identify the capabilities that a test requires of 
your model.  

-If your model platform has a helper class (e.g. 
NeuroConstructModel) you are ready to go!

-If not, implement the required capabilities (i.e. 
mostly just wrapping the existing functionality 
of your model in capability methods).   
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• Know what other models can and can’t do, and what a new model (if 
needed) should explain in order to be better.  

• The ability to continuously test your model against the data it is 
supposed to explain/predict.  

• Accelerates model development (towards some goal of realism).

• Gives you bragging rights in the arena of model competition.  

• Address reviewers who demand that your model pass SciUnit tests.

• Post-publication review of your model, even as new data come to light.  

• Look your child in the face when they ask if you, an alleged scientist, 
used the scientific method in the development of your model.  
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• Choose an analysis algorithm for adjudicating model/data 
goodness-of-fit.

- If that algorithm is provided in a SciUnit test library (e.g. 
NeuronUnit), import and call it.  

- If not, write your own.  

• Identify the data that will parameterize your test.

- If that data is stored in a repository that the test library has 
helper classes for, use them.  

- If not, encode your own data to pass to the test’s constructor.  
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• The ability to put your observations in context.

- Is there a model that explains my data?  

- Which model best explains my data?  

- What other data does it explain?  

• Pre-experiment, grant stage discovery of hypothesis implications.

- If I do experiment X, and it gives result Y, which model does 
that support?  What about result Z? 

• Increased community awareness of the data you collected.  

- It could become the gold standard by which models are judged! 
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• You are building the first model in history with a realistic chance 
of faithfully simulating an entire organism.   

• To faithfully simulate an entire organism, you need to get a lot of 
things right.  

• How do you know if you are getting them right?  

• Do the simulated neurons’ membrane potentials evolve in time 
like the the real C. elegans?

• Do the simulated muscles contract with the same timing and 
intensity as the real worm?

• Does the worm sim swim like the real worm?  
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