-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstale_model_pre.py
280 lines (236 loc) · 10.8 KB
/
stale_model_pre.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# -*- coding: utf-8 -*-
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from utils.transformer import SnippetEmbedding
import yaml
from scipy import ndimage
import itertools,operator
from config.dataset_class import activity_dict
from config.zero_shot import split_t1_train, split_t1_test, split_t2_train, split_t2_test , t1_dict_train , t1_dict_test , t2_dict_train , t2_dict_test
from config.few_shot import base_class,val_class,test_class,base_dict,val_dict,test_dict, base_train,base_train_dict
from MaskFormer.mask_former.modeling.transformer.transformer_predictor_v2 import TransformerPredictor
from transformers import CLIPTokenizer, CLIPModel
from transformers import CLIPTextModel, CLIPTextConfig
with open("./config/anet.yaml", 'r', encoding='utf-8') as f:
tmp = f.read()
config = yaml.load(tmp, Loader=yaml.FullLoader)
class STALE(nn.Module):
def __init__(self):
super(STALE, self).__init__()
self.len_feat = config['model']['feat_dim']
self.temporal_scale = config['model']['temporal_scale']
self.split = config['dataset']['split']
self.num_classes = config['dataset']['num_classes']+1
self.n_heads = config['model']['embedding_head']
self.embedding = SnippetEmbedding(self.n_heads, self.len_feat, self.len_feat, self.len_feat, dropout=0.2)
self.cross_att = SnippetEmbedding(self.n_heads, 512, 512, 512, dropout=0.3)
self.query_adapt = SnippetEmbedding(self.n_heads, 512, 512, 512, dropout=0.3)
self.context_length = 30
self.num_queries = 1
self.txt_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
self.tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
self.nshot = config['fewshot']['shot']
self.cl_names = list(activity_dict.keys())
self.delta = 0
# self.act_prompt = self.get_prompt()
self.bg_embeddings = nn.Parameter(
torch.empty(1, 512)
)
self.proj = nn.Sequential(
nn.Conv1d(2048, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True)
)
context_length = self.context_length
self.contexts = nn.Parameter(torch.randn(1, context_length))
nn.init.trunc_normal_(self.contexts)
self.cls_adapter = nn.Sequential(
nn.Conv1d(in_channels=2*self.len_feat, out_channels=self.len_feat, kernel_size=1,
padding=0)
)
self.masktrans = TransformerPredictor(
in_channels=512,
mask_classification=False,
num_classes=self.num_classes,
hidden_dim=512,
num_queries=1,
nheads=2,
dropout=0.1,
dim_feedforward=1,
enc_layers=2,
dec_layers=2,
pre_norm=True,
deep_supervision=False,
mask_dim=512,
enforce_input_project=True
).cuda()
self.classifier = nn.Sequential(
nn.Conv1d(in_channels=self.len_feat, out_channels=self.num_classes+1, kernel_size=1,
padding=0)
)
self.bn1 = nn.BatchNorm1d(num_features=2048)
self.localizer_mask = nn.Sequential(
nn.Conv1d(in_channels=512, out_channels=256, kernel_size=3,padding=1),
nn.ReLU(inplace=True),
nn.Conv1d(in_channels=256, out_channels=self.temporal_scale, kernel_size=1,stride=1, padding=0, bias=False),
nn.Sigmoid()
)
self.avg_pool = torch.nn.AdaptiveAvgPool1d(1)
self.reduce_mask = nn.Sequential(
nn.Conv1d(100, 1, 1),
nn.Sigmoid()
# nn.Conv1d(1024, 512, 1)
)
self.mask_MLP = nn.Sequential(
nn.Conv1d(5,1,1),
nn.Sigmoid()
)
def get_prompt(self,cl_names):
temp_prompt = []
for c in cl_names:
temp_prompt.append("a video of action"+" "+c)
return temp_prompt
def projection(self,loc_feat):
proj_feat = self.proj(loc_feat)
return proj_feat
# def gen_text_query(self, vid_feat, mode):
def compute_score_maps(self, visual, text):
B,K,C = text.size()
text_cls = text[:,:(K-1),:]
text_cls = text_cls / text_cls.norm(dim=2, keepdim=True)
text = text / text.norm(dim=2, keepdim=True)
visual = torch.clamp(visual,min=1e-4)
visual_cls = visual.mean(dim=2)
visual = visual / visual.norm(dim=1, keepdim=True)
visual_cls = visual_cls / visual_cls.norm(dim=1, keepdim=True)
score_cls = torch.einsum('bc,bkc->bk', visual_cls, text_cls) * 100
score_map = torch.einsum('bct,bkc->bkt', visual, text) * 100
return score_map, score_cls
def gen_text_query(self,vid_feat, mode):
B,T,C = vid_feat.size()
if self.nshot == 0:
if mode == "train" and self.split == 50:
cl_names = list(t2_dict_train.keys())
self.num_classes = 100
elif mode == "test" and self.split == 50:
cl_names = list(t2_dict_test.keys())
self.num_classes = 100
elif mode == "train" and self.split == 75:
cl_names = list(t1_dict_train.keys())
self.num_classes = 150
elif mode == "test" and self.split == 75:
cl_names = list(t1_dict_test.keys())
self.num_classes = 50
else:
if mode == "train":
cl_names = list(base_train_dict.keys())
self.num_classes = 180
elif mode == "test":
cl_names = list(test_dict.keys())
self.num_classes = 20
act_prompt = self.get_prompt(cl_names)
texts = self.tokenizer(act_prompt, padding=True, return_tensors="pt").to('cuda')
text_cls = self.txt_model.get_text_features(**texts) ## [cls,txt_feat] --> [200,512]
text_emb = torch.mean(text_cls,dim=0)
# text_emb = torch.cat([text_cls,self.bg_embeddings],dim=0).expand(B,-1,-1) ## [bs, cls+1 ,txt_feat] --> [bs,201,512]
return text_emb
def crop_features(self, feature, mask):
dtype = mask.dtype
trim_ten = []
trim_feat = torch.zeros_like(feature)
mask_fg = torch.ones_like(mask)
mask_bg = torch.zeros_like(mask)
for i in range(mask.size(0)):
cls_thres = float(torch.mean(mask[i,:],dim=0).detach().cpu().numpy())
top_mask = torch.where(mask[i,:] >= cls_thres, mask_fg[i,:], mask_bg[i,:]).cuda(0)
top_loc = (top_mask==1).nonzero().squeeze().cuda(0)
trim_feat[i,:,top_loc] = feature[i,:,top_loc]
trim_ten.append(trim_feat)
if len(trim_ten) == 0:
trim_ten = feature
else:
trim_ten = torch.stack(trim_ten, dim=0)
return trim_feat
def text_features(self,vid_feat, mode):
B,T,C = vid_feat.size()
if self.nshot == 0:
if mode == "train" and self.split == 50:
cl_names = list(t2_dict_train.keys())
self.num_classes = 100
elif mode == "test" and self.split == 50:
cl_names = list(t2_dict_test.keys())
self.num_classes = 100
elif mode == "train" and self.split == 75:
cl_names = list(t1_dict_train.keys())
self.num_classes = 150
elif mode == "test" and self.split == 75:
cl_names = list(t1_dict_test.keys())
self.num_classes = 50
else:
if mode == "train":
cl_names = list(base_train_dict.keys())
self.num_classes = 180
elif mode == "test":
cl_names = list(test_dict.keys())
self.num_classes = 20
act_prompt = self.get_prompt(cl_names)
texts = self.tokenizer(act_prompt, padding=True, return_tensors="pt").to('cuda')
text_cls = self.txt_model.get_text_features(**texts) ## [cls,txt_feat] --> [200,512]
text_emb = torch.cat([text_cls,self.bg_embeddings],dim=0).expand(B,-1,-1) ## [bs, cls+1 ,txt_feat] --> [bs,201,512]
return text_emb
def find_mask(self,raw_mask):
seq = raw_mask.detach().cpu().numpy()
# print(seq)
m_th = np.mean(seq)
filtered_seq = seq > 0.5
integer_map = map(int,filtered_seq)
filtered_seq_int = list(integer_map)
filtered_seq_int2 = ndimage.binary_fill_holes(filtered_seq_int).astype(int).tolist()
if 1 in filtered_seq_int2 :
r = max((list(y) for (x,y) in itertools.groupby((enumerate(filtered_seq_int2)),operator.itemgetter(1)) if x == 1), key=len)
if r[-1][0] - r[0][0] > 1:
start_pt = r[0][0]
end_pt = r[-1][0]
else:
start_pt = 0
end_pt = 99
else:
start_pt = 0
end_pt = 99
return start_pt,end_pt
def forward(self, snip, mode):
vid_feature = snip
snip = snip.permute(0,2,1)
#### Temporal Embedding Module #####
out = self.embedding(snip,snip,snip)
out = out.permute(0,2,1)
features = out
fg_text_emb = self.gen_text_query(features,mode) ###[1, dim]
# print("text",fg_text_emb.size())
fg_vid_emb = torch.mean(torch.mean(features,dim=2),dim=0) ### [1,dim]
# print("vid", fg_vid_emb.size())
fuse_emb = torch.cat([fg_vid_emb,fg_text_emb],dim=0).unsqueeze(0).unsqueeze(2)
# print(fuse_emb.size())
fg_query = self.cls_adapter(fuse_emb).squeeze(2).expand(self.num_queries,-1)
### Action Mask Localizer Branch ###
bottom_br = self.localizer_mask(features)
#### Representation Mask ####
snipmask = self.masktrans(vid_feature.unsqueeze(2),features.unsqueeze(3),fg_query)
bot_mask = torch.mean(bottom_br, dim=2)
soft_mask = torch.sigmoid(snipmask["pred_masks"]).view(-1,self.temporal_scale)
mask_feat = self.crop_features(features,bot_mask)
soft_tensor = soft_mask
text_feat = self.text_features(vid_feature, mode)
mask_feat = mask_feat.permute(0,2,1)
#### Vision-Language Cross-Adaptation ####
text_feat_att = self.cross_att(text_feat, mask_feat, mask_feat)
text_feat_fin = text_feat_att + self.delta*text_feat
mask_feat = mask_feat.permute(0,2,1)
score_maps, score_maps_class = self.compute_score_maps(mask_feat, text_feat_fin)
### Contextualized Vision-Language Classifier ###
top_br = score_maps
query_adapt_feat = self.query_adapt(features.permute(0,2,1), mask_feat.permute(0,2,1),mask_feat.permute(0,2,1))
bottom_br = self.localizer_mask(query_adapt_feat.permute(0,2,1))
return top_br, bottom_br , soft_tensor , score_maps_class, features