-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstale_inference_meta_pretrain.py
520 lines (413 loc) · 25.1 KB
/
stale_inference_meta_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
import os
import math
import numpy as np
import pandas as pd
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
import itertools,operator
from stale_model_fs import STALE as STALEFS ## STALE novel class
import stale_lib.stale_dataloader_base_pretrain as stale_dataset
import stale_lib.stale_dataloader_fs_pretrain as stale_dataset_fs
from scipy import ndimage
from scipy.special import softmax
from collections import Counter
import cv2
import json
from config.dataset_class import activity_dict
import yaml
from utils.postprocess_utils import multithread_detection , get_infer_dict, load_json
from joblib import Parallel, delayed
from config.dataset_class import activity_dict
from config.few_shot import base_class,val_class,test_class,base_dict,val_dict,test_dict
from tqdm import tqdm
import random
from stale_lib.loss_stale_fs import stale_loss
with open("./config/anet_2gpu.yaml", 'r', encoding='utf-8') as f:
tmp = f.read()
config = yaml.load(tmp, Loader=yaml.FullLoader)
if __name__ == '__main__':
output_path = config['dataset']['testing']['output_path']
## few-shot setting ##
fsmode = config['fewshot']['mode']
nepisode = config['fewshot']['episode']
nshot = config['fewshot']['shot']
emb_dim = config['pretraining']['emb_dim']
is_postprocess = True
if not os.path.exists(output_path + "/results"):
os.makedirs(output_path + "/results")
### Load Model ###
model = STALEFS()
model = torch.nn.DataParallel(model, device_ids=[0,1,2,3,4]).cuda()
### Load Base Class trained Model Checkpoint ###
print(' -- debug', output_path + "/STALE_base_best.pth.tar")
checkpoint = torch.load(output_path + "/STALE_base_best.pth.tar")
model.load_state_dict(checkpoint['state_dict'],strict=False)
def post_process_multi(detection_thread,get_infer_dict):
nms_thres = config['testing']['nms_thresh']
infer_dict , label_dict = get_infer_dict()
pred_data = pd.read_csv("stale_output.csv")
pred_videos = list(pred_data.video_name.values[:])
cls_data_score, cls_data_cls = {}, {}
best_cls = load_json("stale_best_score.json")
for idx, vid in enumerate(infer_dict.keys()):
if vid in pred_videos:
vid = vid[2:]
cls_data_cls[vid] = best_cls["v_"+vid]["class"]
parallel = Parallel(n_jobs=15, prefer="processes")
detection = parallel(delayed(detection_thread)(vid, video_cls, infer_dict['v_'+vid], label_dict, pred_data,best_cls)
for vid, video_cls in cls_data_cls.items())
detection_dict = {}
[detection_dict.update(d) for d in detection]
output_dict = {"version": "ANET v1.3, STALE", "results": detection_dict, "external_data": {}}
with open(output_path + '/detection_result_nms{}.json'.format(nms_thres), "w") as out:
json.dump(output_dict, out)
def generate_prediction(top_br_pred,bottom_br_pred,new_props,supp_cls_dict,video_name):
key_list = list(supp_cls_dict.keys())
val_list = list(supp_cls_dict.values())
tscale = 100
num_class = len(key_list)
# print(len(key_list))
# print(new_props)
top_k_snip = config['testing']['top_k_snip']
class_snip_thresh = config['testing']['class_thresh']
mask_snip_thresh = config['testing']['mask_thresh']
tscale = config['model']['temporal_scale']
props = bottom_br_pred[0].detach().cpu().numpy()
### classifier branch prediction ###
soft_cas = torch.softmax(top_br_pred[0],dim=0)
# print(soft_cas)
# soft_cas_topk,soft_cas_topk_loc = torch.topk(soft_cas[:num_class],2,dim=0)
top_br_np = softmax(top_br_pred[0].detach().cpu().numpy(),axis=0)[:num_class]
label_pred = torch.softmax(torch.mean(top_br_pred[0][:num_class,:],dim=1),axis=0).detach().cpu().numpy()
vid_label_id = np.argmax(label_pred)
vid_label_sc = np.amax(label_pred)
# print(vid_label_id)
props_mod = props[props>0]
top_br_np = softmax(top_br_pred[0].detach().cpu().numpy(),axis=0)[:num_class]
top_br_mean = np.mean(top_br_np,axis=1)
top_br_mean_max = np.amax(top_br_np,axis=1)
top_br_mean_id = np.argmax(top_br_mean)
soft_cas_np = soft_cas[:num_class].detach().cpu().numpy()
seg_score = np.zeros([tscale])
seg_cls = []
seg_mask = np.zeros([tscale])
### for each snippet, store the max score and class info ####
for j in range(tscale):
seg_score[j] = np.amax(soft_cas_np[:,j])
seg_cls.append(np.argmax(soft_cas_np[:,j]))
# seg_score[seg_score < class_thres] = 0
thres = class_snip_thresh
cas_tuple = []
for k in thres:
filt_seg_score = seg_score > k
integer_map1 = map(int,filt_seg_score)
filt_seg_score_int = list(integer_map1)
filt_seg_score_int = ndimage.binary_fill_holes(filt_seg_score_int).astype(int).tolist()
if 1 in filt_seg_score_int:
start_pt1 = filt_seg_score_int.index(1)
end_pt1 = len(filt_seg_score_int) - 1 - filt_seg_score_int[::-1].index(1)
if end_pt1 - start_pt1 > 1:
scores = np.amax(seg_score[start_pt1:end_pt1])
label = max(set(seg_cls[start_pt1:end_pt1]), key=seg_cls.count)
cas_tuple.append([start_pt1,end_pt1,scores,label])
max_score, score_idx = torch.max(soft_cas[:num_class],0)
soft_cas_np = soft_cas[:num_class].detach().cpu().numpy()
score_map = {}
top_np = top_br_pred[0][:num_class].detach().cpu().numpy()
top_np_max = np.mean(top_np,axis=1)
max_score_np = max_score.detach().cpu().numpy()
score_idx = score_idx.detach().cpu().numpy()
for ids in range(len(score_idx)):
score_map[max_score_np[ids]]= score_idx[ids]
k = top_k_snip ## more fast inference
max_idx = np.argpartition(max_score_np, -k)[-k:]
### indexes of top K scores ###
top_k_idx = max_idx[np.argsort(max_score_np[max_idx])][::-1].tolist()
for locs in top_k_idx:
seq = props[locs,:]
thres = mask_snip_thresh
for j in thres:
filtered_seq = seq > j
integer_map = map(int,filtered_seq)
filtered_seq_int = list(integer_map)
filtered_seq_int2 = ndimage.binary_fill_holes(filtered_seq_int).astype(int).tolist()
if 1 in filtered_seq_int:
#### getting start and end point of mask from mask branch ####
start_pt1 = filtered_seq_int2.index(1)
end_pt1 = len(filtered_seq_int2) - 1 - filtered_seq_int2[::-1].index(1)
r = max((list(y) for (x,y) in itertools.groupby((enumerate(filtered_seq_int)),operator.itemgetter(1)) if x == 1), key=len)
start_pt = r[0][0]
end_pt = r[-1][0]
if (end_pt - start_pt)/tscale > 0.02 :
#### get (start,end,cls_score,reg_score,label) for each top-k snip ####
score_ = max_score_np[locs]
cls_score = score_
lbl_id = score_map[score_]
reg_score = np.amax(seq[start_pt+1:end_pt-1])
label = key_list[val_list.index(lbl_id)]
vid_label = key_list[val_list.index(vid_label_id)]
score_shift = np.amax(soft_cas_np[vid_label_id,start_pt:end_pt])
prop_start = start_pt1/tscale
prop_end = end_pt1/tscale
new_props.append([video_name, prop_start , prop_end , score_shift*reg_score, score_shift*cls_score,vid_label])
for m in range(len(cas_tuple)):
start_m = cas_tuple[m][0]
end_m = cas_tuple[m][1]
score_m = cas_tuple[m][2]
reg_score = np.amax(seq[start_m:end_m])
prop_start = start_m/tscale
prop_end = end_m/tscale
cls_score = score_m
new_props.append([video_name, prop_start,prop_end,reg_score,cls_score,vid_label])
return new_props
### Load Dataloader ###
if fsmode == 1: ### base evaluation
test_loader = torch.utils.data.DataLoader(stale_dataset.STALEDataset(subset="validation", mode='inference'),
batch_size=1, shuffle=False,
num_workers=8, pin_memory=True, drop_last=False)
model.eval()
elif fsmode == 2 or fsmode == 3: ### meta evaluation
test_loader = torch.utils.data.DataLoader(stale_dataset_fs.STALEEpisodicDataset(subset="validation", mode='inference'),
batch_size=1, shuffle=False,
num_workers=8, pin_memory=False, drop_last=False)
if fsmode == 1:
#### to do base class inference #####
print("later --> Not priority")
elif fsmode == 2:
#### to do meta-train ####
batch_size_val = 1 # consumes gpu-ram
is_trim = config['fewshot']['trimmed']
supp_trim = config['fewshot']['trim_support']
# shot =
norm_feat = True
n_runs = 1
episodes = 250
# lr = 0.0004
for param in model.parameters():
param.requires_grad = True
model.module.embedding.requires_grad = False
model.module.txt_model.requires_grad = True
# model.module.masktrans.requires_grad = False
model.module.localizer_mask.requires_grad = False
model.train()
model_param = list(model.parameters()) ## getting the params from the transformer linear layers for optimization
optimizer_model = torch.optim.Adam(model_param, lr=0.00004)
best_loss = 0
# tscale = 100
tscale = config['model']['temporal_scale']
# ========== Perform the runs ==========
for run in range(n_runs): ## epochs
for e in tqdm(range(episodes)):
#### N-way K-shot : support set used for training the new (N+1) classifier and query set is used for evalutation the classifier to save model
iter_loader = iter(test_loader)
### to do : complete structure, change model to accept the class list so that N+1 can be created
for i in range(batch_size_val):
try:
idx, support_dict, query_dict, meta_dict = iter_loader.next()
except:
iter_loader = iter(test_loader)
idx, support_dict, query_dict, meta_dict = iter_loader.next()
support_data = support_dict['data'][0]
nway,nshot,C,T,H,W = support_data.size()
support_top_gt = support_dict['class_branch'][0].view(-1,tscale)
support_bot_gt = support_dict['mask_branch'][0].view(-1,tscale,tscale)
support_1d_gt = support_dict['1d_mask'][0].view(-1,tscale)
support_class_bin = support_dict['class_branch_bin'][0].view(-1,nway+1,tscale)
support_class_gt = support_dict['class_1d_gt'].view(-1,nway)
query_data = query_dict['data'][0].view(-1,C,T,H,W)
query_top_gt = query_dict['class_branch'][0].view(-1,tscale)
query_bot_gt = query_dict['mask_branch'][0].view(-1,tscale,tscale)
query_1d_gt = query_dict['1d_mask'][0].view(-1,tscale)
query_class_bin = query_dict['class_branch_bin'][0].view(-1,nway+1,tscale)
query_class_gt = query_dict['class_1d_gt'][0].view(-1,nway)
subcls = meta_dict['class_list']
supp_cls_dict = {}
supp_cls = []
for i in range(nway):
supp_cls.append(subcls[i][0])
supp_cls_dict[subcls[i][0]] = i
support_data = support_data.view(-1,C,T,H,W)
support_data_nshot = support_data.view(-1,nshot,C,T,H,W) # [nway,nshot,C,T]
support_1d_gt_nshot = support_1d_gt.view(-1,nshot,tscale) # [nway,nshot,T]#
support_1d_gt_nshot = support_1d_gt_nshot.unsqueeze(2).expand(-1,-1,emb_dim,-1) # [nway,nshot,C,T]
##### meta-learning data #####
if supp_trim:
support_trimmed = support_data_nshot*support_1d_gt_nshot # [nway, nshot, C, T]
else:
support_trimmed = support_data_nshot
# support_proto = torch.mean(support_trimmed,dim=1) # [nway, C, T]
# support_proto = torch.mean(support_proto, dim=2) # [nway,C]
support_proto = support_1d_gt_nshot
# support_top_pred, support_bot_pred, support_1d_pred = model(support_data,query_data,supp_cls,support_proto,support_trimmed,mode="train")
# supp_loss_train = gsm_loss(support_top_gt,support_top_pred,support_bot_gt,support_bot_pred,support_class_bin,support_1d_pred,support_1d_gt,"train")
support_top_pred, support_bot_pred, support_1d_pred, support_cls_pred, features = model(support_data,query_data,supp_cls,support_proto,support_trimmed,mode="train")
supp_loss_train = stale_loss(support_top_gt,support_top_pred,support_bot_gt,support_bot_pred,support_class_bin,support_1d_pred,support_1d_gt,support_cls_pred,support_class_gt,features,"train")
tot_loss_supp = supp_loss_train[0]
print("[Episode {0:03d}] Total-Loss {1:.2f} = T-Loss {2:.2f} + B-Loss {3:.2f} + M-Loss {4:.2f} (train)".format(
e, tot_loss_supp,supp_loss_train[1],supp_loss_train[2],supp_loss_train[3]))
optimizer_model.zero_grad()
tot_loss_supp.backward()
optimizer_model.step()
# query_top_pred, query_bot_pred, query_1d_pred = model(query_data,support_data,supp_cls,support_proto,support_trimmed,mode="test")
# query_loss_val = gsm_loss(query_top_gt,query_top_pred,query_bot_gt,query_bot_pred,query_class_bin,query_1d_pred,query_1d_gt,mode="test")
query_top_pred, query_bot_pred, query_1d_pred, query_cls_pred, features = model(query_data,support_data,supp_cls,support_proto,support_trimmed,mode="test")
query_loss_val = stale_loss(query_top_gt,query_top_pred,query_bot_gt,query_bot_pred,query_class_bin,query_1d_pred,query_1d_gt,query_cls_pred,query_class_gt,features,mode="test")
tot_loss_query = query_loss_val[0]
print("[Episode {0:03d}] Total-Loss {1:.2f} = T-Loss {2:.2f} + B-Loss {3:.2f} + M-Loss {4:.2f} (test)".format(
e, tot_loss_query,query_loss_val[1],query_loss_val[2],query_loss_val[3]))
state = {'epoch': e + 1,
'state_dict': model.state_dict()}
torch.save(state, output_path + "/STALE_meta_support_checkpoint.pth.tar")
####### Once Trained with Support Examples , Train with Query Samples #######
checkpoint = torch.load(output_path + "/STALE_meta_support_checkpoint.pth.tar")
model.load_state_dict(checkpoint['state_dict'])
for param in model.parameters():
param.requires_grad = True
model.module.embedding.requires_grad = True
model.module.txt_model.requires_grad = False
model.module.masktrans.requires_grad = False
model.module.localizer_mask.requires_grad = False
model.train()
tscale = config['model']['temporal_scale']
for e in tqdm(range(episodes)):
#### N-way K-shot : support set used for training the new (N+1) classifier and query set is used for evalutation the classifier to save model
iter_loader = iter(test_loader)
### to do : complete structure, change model to accept the class list so that N+1 can be created
for i in range(batch_size_val):
try:
idx, support_dict, query_dict, meta_dict = iter_loader.next()
except:
iter_loader = iter(test_loader)
idx, support_dict, query_dict, meta_dict = iter_loader.next()
support_data = support_dict['data'][0]
nway,nshot,C,T,H,W = support_data.size()
support_top_gt = support_dict['class_branch'][0].view(-1,tscale)
# print(support_top_gt.size())
support_bot_gt = support_dict['mask_branch'][0].view(-1,tscale,tscale)
support_1d_gt = support_dict['1d_mask'][0].view(-1,tscale)
support_class_bin = support_dict['class_branch_bin'][0].view(-1,nway+1,tscale)
support_class_gt = support_dict['class_1d_gt'].view(-1,nway)
query_data = query_dict['data'][0].view(-1,C,T,H,W)
query_top_gt = query_dict['class_branch'][0].view(-1,tscale)
query_bot_gt = query_dict['mask_branch'][0].view(-1,tscale,tscale)
query_1d_gt = query_dict['1d_mask'][0].view(-1,tscale)
query_class_bin = query_dict['class_branch_bin'][0].view(-1,nway+1,tscale)
query_class_gt = query_dict['class_1d_gt'][0].view(-1,nway)
subcls = meta_dict['class_list']
supp_cls_dict = {}
supp_cls = []
for i in range(nway):
supp_cls.append(subcls[i][0])
supp_cls_dict[subcls[i][0]] = i
support_data = support_data.view(-1,C,T,H,W)
support_data_nshot = support_data.view(-1,nshot,C,T,H,W) # [nway,nshot,C,T]
support_1d_gt_nshot = support_1d_gt.view(-1,nshot,tscale) # [nway,nshot,T]#
support_1d_gt_nshot = support_1d_gt_nshot.unsqueeze(2).expand(-1,-1,emb_dim,-1) # [nway,nshot,C,T]
##### meta-learning data #####
if supp_trim:
support_trimmed = support_data_nshot*support_1d_gt_nshot # [nway, nshot, C, T]
else:
support_trimmed = support_data_nshot
# print(support_proto.size())
# support_proto = torch.mean(support_trimmed,dim=1) # [nway, C, T]
# support_proto = torch.mean(support_proto, dim=2) # [nway,C]
support_proto = support_1d_gt_nshot
query_top_pred, query_bot_pred, query_1d_pred, query_cls_pred, features = model(query_data,support_data,supp_cls,support_proto,support_trimmed,mode="test")
query_loss_val = stale_loss(query_top_gt,query_top_pred,query_bot_gt,query_bot_pred,query_class_bin,query_1d_pred,query_1d_gt,query_cls_pred,query_class_gt,features,mode="test")
tot_loss_query = query_loss_val[0]
print("[Episode {0:03d}] Total-Loss {1:.2f} = T-Loss {2:.2f} + B-Loss {3:.2f} + M-Loss {4:.2f} (test)".format(
e, tot_loss_query,query_loss_val[1],query_loss_val[2],query_loss_val[3]))
state = {'epoch': e + 1,
'state_dict': model.state_dict()}
torch.save(state, output_path + "/STALE_meta_adaptation_checkpoint.pth.tar")
if tot_loss_query < best_loss :
best_loss = tot_loss_query
torch.save(state, output_path + "/STALE_meta_adaptation_best_checkpoint.pth.tar")
else:
### to do meta-test ###
print("later")
batch_size_val = 1 # consumes gpu-ram
# shot =
norm_feat = True
n_runs = 1
episodes = 50
supp_trim = config['fewshot']['trim_support']
tscale = config['model']['temporal_scale']
new_props = list()
checkpoint = torch.load(output_path + "/STALE_meta_adaptation_checkpoint.pth.tar")
model.load_state_dict(checkpoint['state_dict'])
model.eval()
file = "stale_output.csv"
if(os.path.exists(file) and os.path.isfile(file)):
os.remove(file)
print("Inference start")
for run in range(n_runs): ## epochs
for e in tqdm(range(episodes)):
#### N-way K-shot : support set used for training the new (N+1) classifier and query set is used for evalutation the classifier to save model
iter_loader = iter(test_loader)
### to do : complete structure, change model to accept the class list so that N+1 can be created
for i in range(batch_size_val):
try:
idx, support_dict, query_dict, meta_dict = iter_loader.next()
except:
iter_loader = iter(test_loader)
idx, support_dict, query_dict, meta_dict = iter_loader.next()
support_data = support_dict['data'][0]
nway,nshot,C,T,H,W = support_data.size()
support_top_gt = support_dict['class_branch'][0].view(-1,tscale)
support_bot_gt = support_dict['mask_branch'][0].view(-1,tscale,tscale)
support_1d_gt = support_dict['1d_mask'][0].view(-1,tscale)
support_class_bin = support_dict['class_branch_bin'][0].view(-1,nway+1,tscale)
support_class_gt = support_dict['class_1d_gt'].view(-1,nway)
query_data = query_dict['data'][0].view(-1,C,T,H,W)
query_top_gt = query_dict['class_branch'][0].view(-1,tscale)
query_bot_gt = query_dict['mask_branch'][0].view(-1,tscale,tscale)
query_1d_gt = query_dict['1d_mask'][0].view(-1,tscale)
query_class_bin = query_dict['class_branch_bin'][0].view(-1,nway+1,tscale)
query_class_gt = query_dict['class_1d_gt'][0].view(-1,nway)
subcls = meta_dict['class_list']
query_vid = meta_dict['query_video_id']
# print(query_vid)
supp_cls = []
query_vid_new = []
supp_cls_dict = {}
for i in range(nway):
supp_cls.append(subcls[i][0])
supp_cls_dict[subcls[i][0]] = i
query_vid_new.append(query_vid[i][0])
##### meta-learning data #####
support_data = support_data.view(-1,C,T,H,W)
support_data_nshot = support_data.view(-1,nshot,C,T,H,W) # [nway,nshot,C,T]
support_1d_gt_nshot = support_1d_gt.view(-1,nshot,tscale) # [nway,nshot,T]#
support_1d_gt_nshot = support_1d_gt_nshot.unsqueeze(2).expand(-1,-1,emb_dim,-1) # [nway,nshot,C,T]
if supp_trim:
support_trimmed = support_data_nshot*support_1d_gt_nshot # [nway, nshot, C, T]
else:
support_trimmed = support_data_nshot
# support_proto = torch.mean(support_trimmed,dim=1) # [nway, C, T]
# support_proto = torch.mean(support_proto, dim=2) # [nway,C]
support_proto = support_1d_gt_nshot
query_top_pred, query_bot_pred, query_1d_pred, query_cls_pred, features = model(query_data,support_data,supp_cls,support_proto,support_trimmed,mode="test")
# print()
mult,cl,T = query_top_pred.size()
# print(query_vid_new)
# print(nway)
for i in range(nway):
# for j in range(nshot):
vid_id = query_vid_new[i]
top_pred = query_top_pred[i,:,:].view(1,cl,T)
bot_pred = query_bot_pred[i,:,:].view(1,T,T)
new_props = generate_prediction(top_pred,bot_pred,new_props,supp_cls_dict,vid_id)
### filter duplicate proposals --> Less Time for Post-Processing #####
new_props1 = np.stack(new_props)
b_set = set(map(tuple,new_props1))
result = map(list,b_set)
### save the proposals in a csv file ###
col_name = ["video_name","xmin", "xmax", "clr_score", "reg_score","label"]
new_df = pd.DataFrame(result, columns=col_name)
new_df.to_csv("stale_output.csv", index=False)
###### Post-Process #####
print("Start Post-Processing")
post_process_multi(multithread_detection,get_infer_dict)
print("End Post-Processing")