Skip to content

Latest commit

 

History

History
67 lines (52 loc) · 2.49 KB

README.md

File metadata and controls

67 lines (52 loc) · 2.49 KB

x-vector extractor for Japanese speech

This repository provides a pre-trained model for extracting the x-vector (speaker representation vector). The model is trained using JTubeSpeech corpus, a Japanese speech corpus collected from YouTube.

このリポジトリは,x-vector (話者表現ベクトル) を抽出するための学習済みモデルを提供します.このモデルは,JTubeSpeechコーパスと呼ばれる,YouTubeから収集した日本語音声から学習されています.

Quick Usage

Instantiate the pre-trained model without explicit install as follow:

import torch
model = torch.hub.load("sarulab-speech/xvector_jtubespeech", "xvector", trust_repo=True)

Then, follow 'Usage / 使い方' section.

Training configures / 学習時の設定

  • The number of speakers: 1,233
  • Sampling frequency: 16,000Hz
  • Speaker recognition accuracy: 91% (test data)
  • Feature: 24-dimensional MFCC
  • Dimensionality of x-vector: 512
  • Other configurations: followed the ASV recipe for VoxCeleb in Kaldi.
    • In the opensourced model, model parameters of recognition layers following to the x-vector layer were randomized to protect data privacy.

Installation

pip install xvector-jtubespeech

Usage / 使い方

import numpy as np
from scipy.io import wavfile
import torch
from torchaudio.compliance import kaldi

from xvector_jtubespeech import XVector

def extract_xvector(
  model, # xvector model
  wav   # 16kHz mono
):
  # extract mfcc
  wav = torch.from_numpy(wav.astype(np.float32)).unsqueeze(0)
  mfcc = kaldi.mfcc(wav, num_ceps=24, num_mel_bins=24) # [1, T, 24]
  mfcc = mfcc.unsqueeze(0)

  # extract xvector
  xvector = model.vectorize(mfcc) # (1, 512)
  xvector = xvector.to("cpu").detach().numpy().copy()[0]  

  return xvector

_, wav = wavfile.read("sample.wav") # 16kHz mono
model = XVector("xvector.pth")
xvector = extract_xvector(model, wav) # (512, )

Contributors / 貢献者

  • Takaki Hamada / 濱田 誉輝 (The University of Tokyo / 東京大学)
  • Shinnosuke Takamichi / 高道 慎之介 (The University of Tokyo / 東京大学)

License / ライセンス

MIT

Others / その他

  • The audio sample sample.wav was copied from PJS corpus.