-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathengine.py
175 lines (138 loc) · 7.02 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
"""
modified starting from: https://github.com/facebookresearch/deit
Train and eval functions used in main.py
"""
import math
import sys
from typing import Iterable, Optional
import torch
from timm.data import Mixup
from timm.utils import accuracy, ModelEma
import utils
#from torchvision import utils as vutils
from time import time
from DeiTViT import DeiTVisionTransformer
def train_one_epoch(model: torch.nn.Module,
teacher: torch.nn.Module,
output_dir,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler, max_norm: float = 0,
mixup_fn: Optional[Mixup] = None,
set_training_mode=True, balance=0.5):
model.train(set_training_mode)
metric_logger = utils.MetricLogger(output_dir, delimiter=" ")
header = 'Epoch: [{}]'.format(epoch)
print_freq = 10
for samples, targets in metric_logger.log_every(data_loader, print_freq, header):
samples = samples.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
with torch.no_grad():
if teacher is not None:
if isinstance(teacher, DeiTVisionTransformer):
teacher_gt, teacher_dist = teacher(samples)
else:
teacher_gt = teacher(samples)
teacher_dist = teacher_gt
else:
teacher_gt, teacher_dist = None, None
if utils.is_dist_avail_and_initialized():
model_without_ddp = model.module
else:
model_without_ddp = model
if mixup_fn is not None:
samples, targets_smooth = mixup_fn(samples, targets)
else:
targets_smooth = targets
with torch.cuda.amp.autocast():
model_without_ddp.iter_init(samples, targets_smooth)
cls_loss_value = []
actor_loss_value = []
critic_loss_value = []
dist_loss_value = []
while model_without_ddp.tempT != model_without_ddp.T:
with torch.cuda.amp.autocast():
cls_loss, actor_loss, critic_loss, dist_loss = model(samples, targets_smooth, teacher_gt, teacher_dist)
outputs = model_without_ddp.return_logits
loss = (1-balance)*cls_loss + actor_loss + critic_loss + dist_loss*balance
cls_loss_value.append(cls_loss.item())
dist_loss_value.append(dist_loss.item())
if model_without_ddp.tempT < model_without_ddp.T:
actor_loss_value.append(actor_loss.item())
critic_loss_value.append(critic_loss.item())
if not math.isfinite(loss.item()):
print("cls actor critic losses are {} {} {}, stopping training".format(cls_loss.item(), actor_loss.item(), critic_loss.item()))
sys.exit(1)
optimizer.zero_grad()
# this attribute is added by timm on one optimizer (adahessian)
is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
loss_scaler(loss, optimizer, clip_grad=max_norm,
parameters=model.parameters(), create_graph=is_second_order)
torch.cuda.synchronize()
cls_loss_value = sum(cls_loss_value)/len(cls_loss_value)
dist_loss_value = sum(dist_loss_value)/len(dist_loss_value)
actor_loss_value = sum(actor_loss_value)/len(actor_loss_value)
critic_loss_value = sum(critic_loss_value)/len(critic_loss_value)
if outputs.dim()==3:
targets = targets.unsqueeze(0).repeat([outputs.size(0)]+[1]*targets.dim()).flatten(0,1)
outputs = outputs.flatten(0,1)
acc1, acc5 = accuracy(outputs, targets, topk=(1, 5))
batch_size = samples.shape[0]
metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
metric_logger.update(cls_loss=cls_loss_value)
metric_logger.update(dist_loss=dist_loss_value)
metric_logger.update(actor_loss=actor_loss_value)
metric_logger.update(critic_loss=critic_loss_value)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
with (output_dir / "log.txt").open("a") as f:
f.write("Averaged stats:")
f.write(str(metric_logger))
f.write('\n\n')
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(data_loader, model, teacher, device, output_dir):
metric_logger = utils.MetricLogger(output_dir, delimiter=" ")
header = 'Test:'
# switch to evaluation mode
model.eval()
for images, target in metric_logger.log_every(data_loader, 10, header):
images = images.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
if teacher is not None:
if isinstance(teacher, DeiTVisionTransformer):
teacher_gt, teacher_dist = teacher(images)
else:
teacher_gt = teacher(images)
teacher_dist = teacher_gt
else:
teacher_gt, teacher_dist = None, None
# compute output
with torch.cuda.amp.autocast():
output, loss, output_dist, loss_dist = model(images, target, teacher_gt, teacher_dist)
torch.cuda.synchronize()
batch_size = images.shape[0]
all_accg, all_accd, all_accf = [], [], []
for i in range(output.size(0)):
accg = accuracy(output[i], target, topk=(1,))[0]
accd = accuracy(output_dist[i], target, topk=(1,))[0]
accf = accuracy(torch.softmax(output[i],dim=-1)+torch.softmax(output_dist[i],dim=-1), target, topk=(1,))[0]
metric_logger.meters['accGT_T'+str(i)].update(accg.item(), n=batch_size)
metric_logger.meters['accDT_T'+str(i)].update(accd.item(), n=batch_size)
metric_logger.meters['accFS_T'+str(i)].update(accf.item(), n=batch_size)
all_accg.append(accg)
all_accd.append(accd)
all_accf.append(accf)
accg = sum(all_accg)/len(all_accg)
accd = sum(all_accd)/len(all_accd)
accf = sum(all_accf)/len(all_accf)
metric_logger.update(loss=loss.item())
metric_logger.update(dist_loss=loss_dist.item())
metric_logger.meters['accGT'].update(accg.item(), n=batch_size)
metric_logger.meters['accDT'].update(accd.item(), n=batch_size)
metric_logger.meters['accFS'].update(accf.item(), n=batch_size)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
with (output_dir / "log.txt").open("a") as f:
f.write('* Acc@GT {accg.global_avg:.3f} Acc@DT {accd.global_avg:.3f} Acc@FS {accf.global_avg:.3f} cls_loss {losses.global_avg:.3f} dist_loss {dist_loss.global_avg:.3f}\n\n'
.format(accg=metric_logger.accGT, accd=metric_logger.accDT, accf=metric_logger.accFS, losses=metric_logger.loss, dist_loss=metric_logger.dist_loss))
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}