-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtf_objectdetection.py
227 lines (171 loc) · 7.26 KB
/
tf_objectdetection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
import time
import re
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image
sys.path.append("..")
from utils import label_map_util
from utils import visualization_utils as vis_util
# What model to download.
MODEL_NAME = 'ssd_mobilenet_v1_coco_11_06_2017'
MODEL_FILE = MODEL_NAME + '.tar.gz'
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')
traffic_sign_class_id = 1
NUM_CLASSES = 90
print("starting download")
opener = urllib.request.URLopener()
#opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
print("Has downloaded")
tar_file = tarfile.open(MODEL_FILE)
print("where is the error")
file_name = os.path.basename(MODEL_NAME)
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# ------------------------------------------------------------
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)
print("before path_to")
def detect(detection_graph,
image_tensor,
detection_boxes,
detection_scores,
detection_classes,
image_np,
categories,
runs=1):
with tf.Session(graph=detection_graph) as sess:
# Actual detection.
times = np.zeros(runs)
for i in range(runs):
t0 = time.time()
(boxes, scores, classes) = sess.run([detection_boxes, detection_scores, detection_classes],
feed_dict={image_tensor: image_np})
t1 = time.time()
times[i] = (t1 - t0) * 1000
# Remove unnecessary dimensions
boxes = np.squeeze(boxes)
scores = np.squeeze(scores)
classes = np.squeeze(classes)
return boxes, scores, classes, times
# -----------------------------------------------------------
# For the sake of simplicity we will use only 2 images:
# image1.jpg
# image2.jpg
# If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS.
PATH_TO_TEST_IMAGES_DIR = 'test_images'
TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(1, 4) ]
print(TEST_IMAGE_PATHS)
# Size, in inches, of the output images.
IMAGE_SIZE = (12, 8)
print("before detection")
min_score = 0.1
def filter_boxes(min_score, boxes, scores, classes, categories):
"""Return boxes with a confidence >= `min_score`"""
n = len(classes)
idxs = []
for i in range(n):
if classes[i] in categories and scores[i] >= min_score:
idxs.append(i)
filtered_boxes = boxes[idxs, ...]
filtered_scores = scores[idxs, ...]
filtered_classes = classes[idxs, ...]
return filtered_boxes, filtered_scores, filtered_classes
def to_image_coords(boxes, height, width):
"""
The original box coordinate output is normalized, i.e [0, 1].
This converts it back to the original coordinate based on the image
size.
"""
box_coords = np.zeros_like(boxes)
box_coords[:, 0] = boxes[:, 0] * height
box_coords[:, 1] = boxes[:, 1] * width
box_coords[:, 2] = boxes[:, 2] * height
box_coords[:, 3] = boxes[:, 3] * width
return box_coords
i = 1
line = ""
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
# Definite input and output Tensors for detection_graph
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
#print(detection_boxes.get_shape())
#print(detection_boxes[1])
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
#print(detection_scores.get_shape())
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
#print(detection_classes.get_shape())
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
#print(num_detections.get_shape())
for img in os.listdir('/home/salih/pose-hg-demo/val2017'):
ims = '/home/salih/pose-hg-demo/val2017/{}'.format(img)
print(i)
i = i+1
#for image_path in TEST_IMAGE_PATHS:
#print("My laptop take longer" +str(TEST_IMAGE_PATHS))
#print("is it is it ")
image = Image.open(ims)
# the array based representation of the image will be used later in order to prepare the
# result image with boxes and labels on it.
image_np = load_image_into_numpy_array(image)
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Actual detection.
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
width, height = image.size
#print(width)
#print(height)
b = scores[0][0]
human_id = 1
boxes,scores,classes,_ = detect(detection_graph,
image_tensor,
detection_boxes,
detection_scores,
detection_classes,
image_np_expanded,
traffic_sign_class_id)
boxes, scores, classes = filter_boxes(min_score, boxes, scores, classes, [human_id])
box_coords =to_image_coords(boxes, height, width)
score_idx = 0
for score in scores:
box_cords = str(box_coords[score_idx])
box_cords = box_cords[2:-1]
box_cords = box_cords.replace(" ", " ")
box_cords = box_cords.replace(" ", " ")
box_cords = box_cords.replace("0. ", "0 ")
#box_cords = re.sub(r"\.\d+","", box_cords)
line = line + img + " " + str(score) + " "+ str(box_cords) + "\n"
line = line.replace(" ", " ")
line = line.replace(" ", " ")
score_idx = score_idx + 1
#print("end")
with open('output_of_tfc.txt','a') as f:
f.write(str(line))
print("This is the end")