-
Notifications
You must be signed in to change notification settings - Fork 42
/
run.py
124 lines (103 loc) · 5.63 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import argparse
import os
import torch
from exp.exp_main import Exp_Main
import random
import numpy as np
def set_seed(seed):
random.seed(seed)
seed += 1
np.random.seed(seed)
seed += 1
torch.manual_seed(seed)
parser = argparse.ArgumentParser(description='ETSformer: Exponential Smoothing Transformers for Time-series Forecasting')
# basic config
parser.add_argument('--model_id', type=str, required=True, default='test', help='model id')
parser.add_argument('--model', type=str, required=True, default='ETSformer',
help='model name, options: [ETSformer]')
# data loader
parser.add_argument('--data', type=str, required=True, default='ETTm1', help='dataset type')
parser.add_argument('--root_path', type=str, default='./data/ETT/', help='root path of the data file')
parser.add_argument('--data_path', type=str, default='ETTh1.csv', help='data file')
parser.add_argument('--features', type=str, default='M',
help='forecasting task, options:[M, S, MS]; M:multivariate predict multivariate, S:univariate predict univariate, MS:multivariate predict univariate')
parser.add_argument('--target', type=str, default='OT', help='target feature in S or MS task')
parser.add_argument('--freq', type=str, default='h',
help='freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h')
parser.add_argument('--checkpoints', type=str, default='./checkpoints/', help='location of model checkpoints')
# forecasting task
parser.add_argument('--seq_len', type=int, required=True, help='input sequence length')
parser.add_argument('--label_len', type=int, default=0, help='start token length')
parser.add_argument('--pred_len', type=int, required=True, help='prediction sequence length')
# model define
parser.add_argument('--enc_in', type=int, default=7, help='encoder input size')
parser.add_argument('--dec_in', type=int, default=7, help='decoder input size')
parser.add_argument('--c_out', type=int, default=7, help='output size')
parser.add_argument('--d_model', type=int, default=512, help='dimension of model')
parser.add_argument('--n_heads', type=int, default=8, help='num of heads')
parser.add_argument('--e_layers', type=int, default=2, help='num of encoder layers')
parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers')
parser.add_argument('--d_ff', type=int, default=2048, help='dimension of fcn')
parser.add_argument('--K', type=int, default=1, help='Top-K Fourier bases')
parser.add_argument('--dropout', type=float, default=0.2, help='dropout')
parser.add_argument('--embed', type=str, default='timeF',
help='time features encoding, options:[timeF, fixed, learned]')
parser.add_argument('--activation', type=str, default='sigmoid', help='activation')
parser.add_argument('--min_lr', type=float, default=1e-30)
parser.add_argument('--warmup_epochs', type=int, default=3)
parser.add_argument('--std', type=float, default=0.2)
parser.add_argument('--smoothing_learning_rate', type=float, default=0, help='optimizer learning rate')
parser.add_argument('--damping_learning_rate', type=float, default=0, help='optimizer learning rate')
parser.add_argument('--output_attention', type=bool, default=False)
# optimization
parser.add_argument('--optim', type=str, default='adam', help='optimizer')
parser.add_argument('--num_workers', type=int, default=10, help='data loader num workers')
parser.add_argument('--itr', type=int, default=1, help='experiments times')
parser.add_argument('--train_epochs', type=int, default=15, help='train epochs')
parser.add_argument('--batch_size', type=int, default=32, help='batch size of train input data')
parser.add_argument('--patience', type=int, default=5, help='early stopping patience')
parser.add_argument('--learning_rate', type=float, default=1e-4, help='optimizer learning rate')
parser.add_argument('--des', type=str, default='test', help='exp description')
parser.add_argument('--lradj', type=str, default='exponential_with_warmup', help='adjust learning rate')
# GPU
parser.add_argument('--use_gpu', type=bool, default=True, help='use gpu')
parser.add_argument('--gpu', type=int, default=0, help='gpu')
parser.add_argument('--use_multi_gpu', action='store_true', help='use multiple gpus', default=False)
parser.add_argument('--devices', type=str, default='0,1,2,3', help='device ids of multile gpus')
args = parser.parse_args()
args.use_gpu = True if torch.cuda.is_available() and args.use_gpu else False
if args.use_gpu and args.use_multi_gpu:
args.dvices = args.devices.replace(' ', '')
device_ids = args.devices.split(',')
args.device_ids = [int(id_) for id_ in device_ids]
args.gpu = args.device_ids[0]
print('Args in experiment:')
print(args)
Exp = Exp_Main
for ii in range(args.itr):
set_seed(ii)
# setting record of experiments
setting = '{}_{}_{}_ft{}_sl{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_K{}_lr{}_{}_{}'.format(
args.model_id,
args.model,
args.data,
args.features,
args.seq_len,
args.pred_len,
args.d_model,
args.n_heads,
args.e_layers,
args.d_layers,
args.d_ff,
args.K,
args.learning_rate,
args.des, ii)
if os.path.exists(os.path.join(args.checkpoints, setting)):
continue
exp = Exp(args) # set experiments
print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting))
exp.train(setting)
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
exp.test(setting, data='val')
exp.test(setting, data='test')
torch.cuda.empty_cache()