-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSingelcoreSummarisation.py
384 lines (329 loc) · 11.9 KB
/
SingelcoreSummarisation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
#Author: Saksham Singhal
from Stemmer import Stemmer
import sys
import re,os
import math
from collections import defaultdict
from copy import deepcopy
import subprocess
st = Stemmer('english')
pattern=re.compile(r'[\d+\.]*[\d]+|[^\w]+') #pattern to detect numbers (real/integer) non alphanumeric (no underscore)
Summary = []
lamda = 6
alpha = 0.75
#stopword dictionary from "stopwords.txt" file
stopWordDict = defaultdict(int)
stopWordFile = open("./stopwords.txt","r")
for line in stopWordFile:
stopWordDict[line.strip()]=1
def extractDocumentCorpus(folder):
os.chdir(folder)
print folder
document_to_senctence_corpus = {}
for each_file in os.listdir('.'):
print each_file
fileptr = open(each_file,'r')
fileText = fileptr.read()
l = fileText.split()
for i in xrange(len(l)):
if (l[i].count('.')>1) or (not l[i].endswith('.')) :
l[i] = l[i].replace('.','')
fileText = " ".join(l)
fileText = fileText.replace("_"," ")
fileText = fileText.replace(".","_")
fileText = re.sub(pattern,' ',fileText)
fileText = re.sub(r'[\s]+',' ',fileText)
fileText = fileText.replace('_',".")
# print fileText
fileptr.close()
if each_file not in document_to_senctence_corpus:
# print "yes"
# l= fileText.split(".")
document_to_senctence_corpus[each_file] = fileText
os.chdir("..")
return document_to_senctence_corpus
def generateInverseDocFrequency(corpus):
total_docs = len(corpus.keys())
idf_scores = defaultdict(float)
term_doc_count = defaultdict(list)
for each_doc in corpus:
current_doc = corpus[each_doc]
for word in current_doc.split():
word = word.replace('.','')
if word not in stopWordDict:
word = st.stemWord(word)
#Checking the douments it is belonging to
if word not in term_doc_count:
term_doc_count[word] = [each_doc]
elif each_doc not in term_doc_count[word]:
term_doc_count[word].append(each_doc)
for term in term_doc_count:
idf_scores[term] = math.log10(1+ ((1.0*total_docs)/len(term_doc_count[term])))
return idf_scores
def generateClusterInputFile(corpus):
ClusterInputFile = "../../Temp/SentencesToCluster.txt"
ClusterInputFile_ptr = open(ClusterInputFile,'w')
for each_doc in corpus:
current_doc = corpus[each_doc]
sentences = []
sentences = current_doc.split('.')
print each_doc
print len(sentences)
# break
for each_sentence in sentences:
if len(each_sentence)>1:
if each_sentence[0]==' ':
each_sentence = each_sentence[1:]
ClusterInputFile_ptr.write(each_sentence+'\n')
ClusterInputFile_ptr.close()
def convertFiletoMatFormat():
os.chdir("../..")
if not os.path.exists("Temp"):
os.makedirs("Temp")
os.system("perl doc2mat/doc2mat -mystoplist=stopwords.txt -nlskip=1 -skipnumeric Temp/SentencesToCluster.txt Temp/ClutoInput.mat")
def clusterSentences(folder):
line_count = 0
ClusterFile = open("Temp/SentencesToCluster.txt",'r')
for line in ClusterFile.readlines():
line_count+=1
print line_count
os.system("cluto/Linux/vcluster -clmethod=bagglo -sim=cos -niter=100 -seed=45 Temp/ClutoInput.mat "+str(line_count/10))
os.system("mv ClutoInput.* Temp/")
return line_count/10
# Here -clmethod can be replaced with 'direct' for conventional k-Means
# But in general 'rbr', works for efficiently
# Limiting maximum number of iteration to 100 and setting similarity to 'cosine'
# seed determines the start of randomness selection points
# cstype chooses l2 as clustering criterion.
def mapSentencetoCluster():
sentenceFile = open("Temp/SentencesToCluster.txt",'r')
sentences = sentenceFile.readlines()
sentenceFile.close()
for idx in range(len(sentences)):
sentences[idx] = sentences[idx].split('\n')[0]
# Creating cluster number index.
clusterFile = open("Temp/ClutoInput.mat.clustering."+str(noOfClusters),'r')
clusterIndex = clusterFile.readlines()
clusterFile.close()
for idx in range(len(clusterIndex)):
clusterIndex[idx] = clusterIndex[idx].split('\n')[0]
# Merging the 2 together.
clusterSentenceIndex = []
for idx in range(len(clusterIndex)):
temp = []
temp.append(clusterIndex[idx])
temp.append(sentences[idx])
clusterSentenceIndex.append(temp)
clusterSentenceIndex.sort()
# Printing the sentences into the file.
outputIndexFile= open('Temp/sentence-cluster-sorted-index.txt','w')
for idx in range(len(clusterSentenceIndex)):
if int(clusterSentenceIndex[idx][0]) >= 0: # Handles Unneccesary empty sentences
line = clusterSentenceIndex[idx][1]+'$'+clusterSentenceIndex[idx][0]+'\n'
outputIndexFile.write(line)
outputIndexFile.close()
def consolidateClusters():
clusterSentencesFile = open('Temp/sentence-cluster-sorted-index.txt','r')
cluster_to_sentences_dict = defaultdict(list)
for line in clusterSentencesFile.readlines():
lin,cluster = line.split('$')
cluster = cluster.replace('\n','')
if cluster in cluster_to_sentences_dict:
cluster_to_sentences_dict[cluster].append(lin)
else:
cluster_to_sentences_dict[cluster] = [lin]
return cluster_to_sentences_dict
def removeStopWordsandStemming(sentence):
processed_sentence = []
for word in sentence:
if word not in stopWordDict:
processed_sentence.append(st.stemWord(word))
return processed_sentence
def cosine_similarity(sent1,sent2):
global idf_scores
cosine_sim_sum = 0.0
set_sent1 = set(removeStopWordsandStemming(sent1.split()))
set_sent2 = set(removeStopWordsandStemming(sent2.split()))
for word in set_sent1:
if (word in set_sent2) and (word in idf_scores):
cosine_sim_sum += (sent1.count(word)*sent2.count(word)*idf_scores[word]*idf_scores[word])
root_sum_sent1 = 0
root_sum_sent2 = 0
for word in set_sent1:
if word in idf_scores:
root_sum_sent1 += ((sent1.count(word)*idf_scores[word])**2)
for word in set_sent2:
if word in idf_scores:
root_sum_sent2 += ((sent2.count(word)*idf_scores[word])**2)
root_sum_sent1 = math.sqrt(root_sum_sent1)
root_sum_sent2 = math.sqrt(root_sum_sent2)
# print sent1
# print sent2
return ((cosine_sim_sum)/(root_sum_sent1*root_sum_sent2))
def calculateSimilarityWithSummary(sentence,summary):
Summary_similarity = 0
for i in summary:
if len(i)>1:
Summary_similarity += cosine_similarity(sentence,i)
return Summary_similarity
def calculaterSimilarityWithCorpus(sentence):
global cluster_to_sentences_dict
corpus_similarity = 0
for cluster in cluster_to_sentences_dict:
current_cluster = cluster_to_sentences_dict[cluster]
for each_sentence in current_cluster:
if len(each_sentence)>1:
corpus_similarity += cosine_similarity(each_sentence,sentence)
return corpus_similarity
def getTotalSenteces():
fp = open('Temp/sentence-cluster-sorted-index.txt','r')
text = fp.readlines()
return len(text)
def getDiversity(total_sentences,summary):
global cluster_to_sentences_dict
diversity_measure = 0
for cluster in cluster_to_sentences_dict:
current_cluster = cluster_to_sentences_dict[cluster]
intersection_set = set(summary).intersection(set(current_cluster))
cluster_diversity = 0
for sentence in intersection_set:
cluster_diversity += (calculaterSimilarityWithCorpus(sentence)*1.0)/total_sentences
diversity_measure += math.sqrt(cluster_diversity)
return diversity_measure
def getCoverage(summary):
global cluster_to_sentences_dict
total_sentences = getTotalSenteces()
covereage_measure=0
for cluster in cluster_to_sentences_dict:
current_cluster = cluster_to_sentences_dict[cluster]
for each_sentence in current_cluster:
if len(each_sentence)>1:
Summary_similarity = calculateSimilarityWithSummary(each_sentence,summary)
corpus_similarity = calculaterSimilarityWithCorpus(each_sentence)
covereage_measure += min(Summary_similarity,((alpha*1.0*corpus_similarity)/total_sentences))
return covereage_measure
def extractSummary(cluster_to_sentences_dict):
global Summary
global lamda
global alpha
global current_size
total_sentences = getTotalSenteces()
current_sentence = ""
current_score = 0
max_sentence = ""
max_score = 0
covereage = 0
max_cluster=-1
check_cluster=-1
curent_cov=-1
current_div=-1
max_cov=-1
max_div=-1
max_sumsin=-1
max_corsim =-1
for cluster in cluster_to_sentences_dict:
current_cluster = cluster_to_sentences_dict[cluster]
# print current_cluster
for each_sentence in current_cluster :
# print each_sentence
# print Summary
if (each_sentence not in Summary) and (current_size+len(each_sentence)<665):
# print "yes"
############################## Compute covereage ##############################
# current_summary = []
current_summary = deepcopy(Summary)
current_summary.append(each_sentence)
# print type(each_sentence)
# print current_summary
covereage = getCoverage(current_summary)
# summary_sim = calculateSimilarityWithSummary(each_sentence,current_summary)
# corpus_sim = calculaterSimilarityWithCorpus(each_sentence)
# covereage = min(summary_sim,(alpha*corpus_sim))
############################### Compute Diversity #############################
diversity = getDiversity(total_sentences,current_summary)
############################### Greedily Check ################################
current_score = covereage + (lamda*diversity)
current_sentence = each_sentence
check_cluster =cluster
# print" ###################"
# print covereage
# print diversity
# print current_score
# print each_sentence
# print "###################"
if current_score > max_score:
max_score = current_score
max_sentence = current_sentence
max_cluster=check_cluster
max_cov=covereage
max_div=diversity
# max_corsim = corpus_sim
# max_sumsin = summary_sim
Summary.append(max_sentence)
current_size+=len(max_sentence)
# print max_score
# print max_sentence
# print current_size
# print max_cluster
# print max_cov
# print max_div
# print max_corsim
# print max_sumsin
# print "########################3"
#
current_size =0
main_output_file = open('Final_Output.txt','w')
main_output_file.write('ClusterID\tRouge-1 R\tRouge-1 F\n')
main_output_file.close()
datasetFolder = 'DUC-2004/Cluster_of_Docs'
os.chdir(datasetFolder)
alphatoRouge = defaultdict(float)
alpha = 15
while alpha<35:
rougue_score=[]
for cluster in os.listdir('.'):
current_size=0
Summary =[]
if not os.path.exists("../../Temp"):
os.makedirs("../../Temp")
document_to_senctence_corpus = extractDocumentCorpus(cluster)
idf_scores = generateInverseDocFrequency(document_to_senctence_corpus)
generateClusterInputFile(document_to_senctence_corpus)
convertFiletoMatFormat()
noOfClusters = clusterSentences(datasetFolder)
mapSentencetoCluster()
cluster_to_sentences_dict = consolidateClusters()
# print cluster_to_sentences_dict
for i in xrange(5):
extractSummary(cluster_to_sentences_dict)
outfile = open('Temp/Summaryoutput.txt','w')
print Summary
for i in Summary:
outfile.write(i+'\n')
outfile.close()
output = subprocess.check_output("java -cp C_Rouge/C_ROUGE.jar executiverouge.C_ROUGE Temp/Summaryoutput.txt DUC-2004/Test_Summaries/"+cluster+"/ 1 B R",shell=True)
output = float(output)
output1 = subprocess.check_output("java -cp C_Rouge/C_ROUGE.jar executiverouge.C_ROUGE Temp/Summaryoutput.txt DUC-2004/Test_Summaries/"+cluster+"/ 1 B F",shell=True)
output1 = float(output1)
rougue_score.append(output)
main_output_file = open("Final_Output.txt",'a')
main_output_file.write(str(cluster)+"\t"+str(output)+"\t"+str(output1)+"\n")
print str(cluster)+"\t"+str(output)+"\t"+str(output1)
main_output_file.close()
#break
# os.system("rm -rf Temp/")
if not os.path.exists("Temp"):
os.makedirs("Temp")
os.chdir(datasetFolder)
alpha+=10
alphatoRouge[alpha] = sum(rougue_score)/len(rougue_score)
print alphatoRouge
break
main_output_file.close()
################################################################
# #
# Here we need to start clustering the Docs #
# #
################################################################
## Assuming Here basically we have a clustered file which has sentences followed by the cluster they belong in
## sorted order!.