-
Notifications
You must be signed in to change notification settings - Fork 1
/
loss_func.py
126 lines (95 loc) · 3.87 KB
/
loss_func.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
from functools import partial
class MultiCrossEntropyLoss(nn.Module):
def __init__(self, focal=False, weight=None, reduce=True):
super(MultiCrossEntropyLoss, self).__init__()
self.num_classes = 23
self.focal = focal
self.weight= weight
self.reduce = reduce
self.gamma_ = torch.zeros(self.num_classes).cuda() + 0.025
self.gamma_f = 0.05
self.register_buffer('pos_grad', torch.zeros(self.num_classes-1).cuda())
self.register_buffer('neg_grad', torch.zeros(self.num_classes-1).cuda())
self.register_buffer('pos_neg', torch.ones(self.num_classes-1).cuda())
def forward(self, input, target):
target_sum = torch.sum(target, dim=1)
target_div = torch.where(target_sum != 0, target_sum, torch.ones_like(target_sum)).unsqueeze(1)
target = target/target_div
logsoftmax = nn.LogSoftmax(dim=1).to(input.device)
gamma = self.gamma_.clone()
gamma[:-1] = gamma[:-1] + self.gamma_f * (1 - self.pos_neg)
if not self.focal:
if self.weight is None:
output = torch.sum(-target * logsoftmax(input), 1)
else:
output = torch.sum(-target * logsoftmax(input) /self.weight, 1)
else:
softmax = nn.Softmax(dim=1).to(input.device)
p = softmax(input)
output = torch.sum(-target * (1 - p)**gamma * logsoftmax(input), 1)
if self.reduce:
return torch.mean(output)
else:
return output
def map_func(self, x, s):
min_val = torch.min(x)
max_val = torch.max(x)
mu = torch.mean(x)
x = (x - min_val) / (max_val - min_val)
return 1 / (1 + torch.exp(-s * (x - mu)))
def collect_grad(self, target, grad):
grad = torch.abs(grad.reshape(-1, grad.shape[-1])).cuda()
target = target.reshape(-1, target.shape[-1]).cuda()
pos_grad = torch.sum(grad * target, dim=0)[:-1]
neg_grad = torch.sum(grad * (1 - target), dim=0)[:-1]
self.pos_grad += pos_grad
self.neg_grad += neg_grad
self.pos_neg = torch.clamp(self.pos_grad / (self.neg_grad + 1e-10), min=0, max=1)
self.pos_neg = self.map_func(self.pos_neg, 1)
def cls_loss_func(y,output, use_focal=False, weight=None, reduce=True):
input_size=y.size()
y = y.float().cuda()
if weight is not None:
weight = weight.cuda()
loss_func = MultiCrossEntropyLoss(focal=True, weight=weight, reduce=reduce)
y=y.reshape(-1,y.size(-1))
output=output.reshape(-1,output.size(-1))
loss = loss_func(output,y)
if not reduce:
loss = loss.reshape(input_size[:-1])
return loss
def cls_loss_func_(loss_func, y,output, use_focal=False, weight=None, reduce=True):
input_size=y.size()
y = y.float().cuda()
if weight is not None:
weight = weight.cuda()
y=y.reshape(-1,y.size(-1))
output=output.reshape(-1,output.size(-1))
loss = loss_func(output,y)
if not reduce:
loss = loss.reshape(input_size[:-1])
return loss
def regress_loss_func(y,output):
y = y.float().cuda()
y=y.reshape(-1,y.size(-1))
output=output.reshape(-1,output.size(-1))
bgmask= y[:,1] < -1e2
fg_logits = output[~bgmask]
bg_logits = output[bgmask]
fg_target = y[~bgmask]
bg_target = y[bgmask]
loss = nn.functional.l1_loss(fg_logits,fg_target)
if(loss.isnan()):
return torch.tensor([0.0], requires_grad=True).cuda()
return loss
def suppress_loss_func(y,output):
y = y.float().cuda()
y=y.reshape(-1,y.size(-1))
output=output.reshape(-1,output.size(-1))
loss = nn.functional.binary_cross_entropy(output,y)
return loss