-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMLLAB4b.R
42 lines (37 loc) · 1.43 KB
/
MLLAB4b.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
data<-read.csv("dmf.csv")
summary(data)
hist(data$dmf)
hist(data$flor)
mod1<-lm(dmf~flor,data)
print(mod1)
summary(mod1)
sum((data$dmf-mod1$fitted.values)^2)
rmse(data$dmf,mod1$fitted.values)
plot(density(mod1$residuals))
scatter.smooth(x=mod1$residuals, y=mod1$fitted.values, main="error ~ predicted")
scatter.smooth(x=data$dmf, y=mod1$fitted.values, main="predicted ~ response")
mod2<-lm(dmf~flor+flor*flor,data)
print(mod2)
summary(mod2)
sum((data$dmf- mod2$fitted.values)^2)
rmse(data$dmf,mod2$fitted.values)
plot(density(mod2$residuals))
scatter.smooth(x=mod2$residuals, y=mod2$fitted.values, main="error ~ predicted")
scatter.smooth(x=data$dmf, y=mod2$fitted.values, main="predicted ~ response")
mod3<-lm(dmf~flor+flor*flor+sqrt(flor),data)
print(mod3)
summary(mod3)
sum((data$dmf- mod3$fitted.values)^2)
rmse(data$dmf,mod3$fitted.values)
plot(density(mod3$residuals))
scatter.smooth(x=mod3$residuals, y=mod3$fitted.values, main="error ~ predicted")
scatter.smooth(x=data$dmf, y=mod3$fitted.values, main="predicted ~ response")
fourootflor <- sqrt(sqrt(data$flor))
mod4<-lm(dmf ~log(data$flor+1)+ data$flor + (data$flor*data$flor+1)/sqrt(data$flor) + 1/fourootflor,data)
print(mod4)
summary(mod4)
sum((data$dmf- mod4$fitted.values)^2)
rmse(data$dmf,mod4$fitted.values)
plot(density(mod4$residuals))
scatter.smooth(x=mod4$residuals, y=mod4$fitted.values, main="error ~ predicted")
scatter.smooth(x=data$dmf, y=mod4$fitted.values, main="predicted ~ response")