diff --git a/vignettes/introduction-to-tidyjson.Rmd b/vignettes/introduction-to-tidyjson.Rmd index dd78659..cb03af4 100644 --- a/vignettes/introduction-to-tidyjson.Rmd +++ b/vignettes/introduction-to-tidyjson.Rmd @@ -78,7 +78,6 @@ people <- ' # Structure the data people %>% # %>% is the magrittr pipeline operator - as.tbl_json %>% # parse the JSON and setup a 'tbl_json' object gather_array %>% # gather (stack) the array by index spread_values( # spread (widen) values to widen the data.frame name = jstring("name"), # value of "name" becomes a character column @@ -183,7 +182,7 @@ Using tidyjson, we can build a pipeline to turn this JSON into a tidy data.frame where each row corresponds to a purchased item: ```{r} -purch_items <- purch_json %>% as.tbl_json %>% +purch_items <- purch_json %>% gather_array %>% # stack the users spread_values(person = jstring("name")) %>% # extract the user name enter_object("purchases") %>% gather_array %>% # stack the purchases @@ -255,6 +254,7 @@ TODO: * Describe preservation of JSON under various operations ([, filter, etc.) * Add sections on files, data.frames * Show a table of methods for tbl_json +* Explain that you don't have to call as.tbl_json with verbs ### JSON included in the package @@ -309,7 +309,7 @@ each row of the data.frame, and adds a new column (`type` by default) that identifies the type according to the [JSON standard](http://json.org/). ```{r} -types <- c('{"a": 1}', '[1, 2]', '"a"', '1', 'true', 'null') %>% as.tbl_json %>% +types <- c('{"a": 1}', '[1, 2]', '"a"', '1', 'true', 'null') %>% json_types types$type ``` @@ -329,7 +329,7 @@ This is equivalent to "stacking" the array in the data.frame, and lets you continue to manipulate the remaining JSON in the elements of the array. ```{r} -'[1, "a", {"k": "v"}]' %>% as.tbl_json %>% gather_array %>% json_types +'[1, "a", {"k": "v"}]' %>% gather_array %>% json_types ``` This allows you to *enter into* an array and begin processing it's elements @@ -343,7 +343,7 @@ the rows in the data.frame to correspond to the keys of the object, and puts the values of the object into the JSON attribute. ```{r} -'{"name": "bob", "age": 32}' %>% as.tbl_json %>% gather_keys %>% json_types +'{"name": "bob", "age": 32}' %>% gather_keys %>% json_types ``` This allows you to *enter into* the keys of the objects just like `gather_array` @@ -360,8 +360,7 @@ be captured at each desired key location These values can be of varying types at varying depths, e.g., ```{r} -'{"name": {"first": "bob", "last": "jones"}, "age": 32}' %>% - as.tbl_json %>% +'{"name": {"first": "bob", "last": "jones"}, "age": 32}' %>% spread_values( first.name = jstring("name", "first"), age = jnumber("age") @@ -375,8 +374,9 @@ a column X (for X in "string", "number", "logical") insofar as it is of the JSON type specified. For example: ```{r} -'{"first": "bob", "last": "jones"}' %>% as.tbl_json %>% - gather_keys() %>% append_values_string() +'{"first": "bob", "last": "jones"}' %>% + gather_keys() %>% + append_values_string() ``` Any values that do not conform to the type specified will be NA in the resulting @@ -395,9 +395,10 @@ data.frame row will be discarded. ```{r} c('{"name": "bob", "children": ["sally", "george"]}', '{"name": "anne"}') %>% - as.tbl_json %>% spread_values(parent.name = jstring("name")) %>% + spread_values(parent.name = jstring("name")) %>% enter_object("children") %>% - gather_array %>% append_values_string("children") + gather_array %>% + append_values_string("children") ``` This is useful when you want to limit your data to just information found in @@ -425,7 +426,7 @@ Let's grab the "totalamt", and then gather the array of sectors and their percent allocations. ```{r} -amts <- worldbank %>% as.tbl_json %>% +amts <- worldbank %>% spread_values( total = jnumber("totalamt") ) %>% @@ -544,7 +545,7 @@ json <- '{ } ] }' -json %>% as.tbl_json %>% +json %>% spread_values(customer = jstring("name")) %>% # Keep the customer name enter_object("shopping cart") %>% # Look at their cart gather_array %>% # Expand the data.frame and dive into each array element