-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathscannet_monocular_dataset.py
61 lines (53 loc) · 2.29 KB
/
scannet_monocular_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import numpy as np
import os.path as osp
from collections import defaultdict
from mmdet.datasets import DATASETS
from .custom_3d import Custom3DDataset
from .scannet_dataset import ScanNetDataset
from mmdet3d.core.bbox import DepthInstance3DBoxes
from .dataset_wrappers import MultiViewMixin
@DATASETS.register_module()
class ScanNetMultiViewDataset(MultiViewMixin, Custom3DDataset):
CLASSES = ScanNetDataset.CLASSES
def get_data_info(self, index):
info = self.data_infos[index]
input_dict = defaultdict(list)
axis_align_matrix = info['annos']['axis_align_matrix'].astype(np.float32)
for i in range(len(info['img_paths'])):
img_filename = osp.join(self.data_root, info['img_paths'][i])
input_dict['img_prefix'].append(None)
input_dict['img_info'].append(dict(filename=img_filename))
extrinsic = np.linalg.inv(axis_align_matrix @ info['extrinsics'][i])
input_dict['lidar2img'].append(extrinsic.astype(np.float32))
input_dict = dict(input_dict)
origin = np.array([.0, .0, .5])
input_dict['lidar2img'] = dict(
extrinsic=input_dict['lidar2img'],
intrinsic=info['intrinsics'].astype(np.float32),
origin=origin.astype(np.float32)
)
if not self.test_mode:
annos = self.get_ann_info(index)
input_dict['ann_info'] = annos
if self.filter_empty_gt and len(annos['gt_bboxes_3d']) == 0:
return None
return input_dict
def get_ann_info(self, index):
info = self.data_infos[index]
if info['annos']['gt_num'] != 0:
gt_bboxes_3d = info['annos']['gt_boxes_upright_depth'].astype(
np.float32) # k, 6
gt_labels_3d = info['annos']['class'].astype(np.long)
else:
gt_bboxes_3d = np.zeros((0, 6), dtype=np.float32)
gt_labels_3d = np.zeros((0,), dtype=np.long)
# to target box structure
gt_bboxes_3d = DepthInstance3DBoxes(
gt_bboxes_3d,
box_dim=gt_bboxes_3d.shape[-1],
with_yaw=False,
origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d)
anns_results = dict(
gt_bboxes_3d=gt_bboxes_3d,
gt_labels_3d=gt_labels_3d)
return anns_results