From a6f53afd730cae0b29c666c3767636346d583de2 Mon Sep 17 00:00:00 2001 From: Jonathan Kliem Date: Mon, 7 Sep 2020 15:36:08 +0200 Subject: [PATCH] fix doctests --- src/sage/geometry/polyhedron/base.py | 26 +++++++++++++------------- 1 file changed, 13 insertions(+), 13 deletions(-) diff --git a/src/sage/geometry/polyhedron/base.py b/src/sage/geometry/polyhedron/base.py index 370386f1fbf..520fd7a2c07 100644 --- a/src/sage/geometry/polyhedron/base.py +++ b/src/sage/geometry/polyhedron/base.py @@ -6918,8 +6918,8 @@ def join_of_Vrep(self, *Vrepresentatives): A 0-dimensional face of a Polyhedron in ZZ^5 defined as the convex hull of 1 vertex sage: P.join_of_Vrep() A -1-dimensional face of a Polyhedron in ZZ^5 - sage: P.join_of_Vrep(1,3,4).ambient_V_indices() - (0, 1, 2, 3, 4, 5) + sage: P.join_of_Vrep(0,12,13).ambient_V_indices() + (0, 12, 13, 68) The input is flexible:: @@ -6977,12 +6977,12 @@ def meet_of_facets(self, *facets): A 4-dimensional face of a Polyhedron in ZZ^5 defined as the convex hull of 120 vertices sage: P.meet_of_facets(1) A 3-dimensional face of a Polyhedron in ZZ^5 defined as the convex hull of 24 vertices - sage: P.meet_of_facets(2) + sage: P.meet_of_facets(4) A 3-dimensional face of a Polyhedron in ZZ^5 defined as the convex hull of 12 vertices - sage: P.meet_of_facets(2,3,4) + sage: P.meet_of_facets(1,3,7) A 1-dimensional face of a Polyhedron in ZZ^5 defined as the convex hull of 2 vertices - sage: P.meet_of_facets(2,3,4).ambient_H_indices() - (0, 2, 3, 4) + sage: P.meet_of_facets(1,3,7).ambient_H_indices() + (0, 1, 3, 7) The indices are the indices of the Hrepresentation:: @@ -6993,7 +6993,7 @@ def meet_of_facets(self, *facets): The input is flexible:: - sage: P.meet_of_facets(P.facets()[-1], P.inequalities()[1], 3) + sage: P.meet_of_facets(P.facets()[-1], P.inequalities()[2], 7) A 1-dimensional face of a Polyhedron in ZZ^5 defined as the convex hull of 2 vertices TESTS: @@ -7002,13 +7002,13 @@ def meet_of_facets(self, *facets): sage: P = polytopes.permutahedron(3, backend='field') sage: P.Hrepresentation() - (An inequality (1, 1, 0) x - 3 >= 0, + (An inequality (0, 0, 1) x - 1 >= 0, + An inequality (0, 1, 0) x - 1 >= 0, + An inequality (0, 1, 1) x - 3 >= 0, An inequality (1, 0, 0) x - 1 >= 0, - An inequality (0, -1, 0) x + 3 >= 0, - An inequality (0, 2, 0) x - 2 >= 0, - An inequality (-4, -4, 0) x + 20 >= 0, - An inequality (-8, 0, 0) x + 24 >= 0, - An equation (-1/6, -1/6, -1/6) x + 1 == 0) + An inequality (1, 0, 1) x - 3 >= 0, + An inequality (1, 1, 0) x - 3 >= 0, + An equation (1, 1, 1) x - 6 == 0) sage: P.meet_of_facets(0) A 1-dimensional face of a Polyhedron in QQ^3 defined as the convex hull of 2 vertices """