This document describes how to deploy and demonstrate CVAT on OpenShift Virtualization
- Prerequisites
- Install CVAT in a OpenShift Virtualization virtual machine
- Image labeling with the Computer Vision Annotation Tool
- Demo Clean-up
- OpenShift Virtualization is deployed and configured on you target cluster
virtctl
on your laptop (install demo only)- Project
manuela-visual-inspection
has been created.
In the OpenShift Console go into the manuela-visual-inspection
project and navigate to Virtualization
-> VirtualMachines
.
- Select
Create
->From catalog
->CentOS Stream 8 VM
->Customize VirtualMachine
- Enter General data:
- Name: cvat
- Optional parameter
CLOUD_USER_PASSWORD
:redhat
- Review and Create Virtual Machine
- Start Virtual Machine
- Check the Console and login
The steps below are based on CVAT Quick installation guide
Login into the CentOS Streams VM, install and start tmux
# oc get vmi
NAME AGE PHASE IP NODENAME
cvat 13d Running 10.131.0.109 storm5-10g.ocp5.stormshift.coe.muc.redhat.com
# virtctl console cvat
Successfully connected to cvat console. The escape sequence is ^]
[centos@cvat ~]$ sudo dnf install tmux -y
[centos@cvat ~]$ tmux
Install Docker and Compose
# sudo systemctl disable firewalld
# sudo dnf install iptables -y
# sudo dnf config-manager --add-repo=https://download.docker.com/linux/centos/docker-ce.repo
# sudo dnf install docker-ce --nobest -y
# sudo systemctl enable --now docker
# systemctl is-active docker
active
# systemctl is-enabled docker
enabled
# sudo docker --version
Docker version 20.10.3, build 48d30b5
Enable centos
user
# sudo usermod -aG docker centos
Log out and log back in (or reboot) so that your group membership is re-evaluated.
Test Docker
# docker run hello-world
Install Compose
# curl -L https://github.com/docker/compose/releases/download/1.25.4/docker-compose-`uname -s`-`uname -m` -o docker-compose
# sudo mv docker-compose /usr/local/bin && sudo chmod +x /usr/local/bin/docker-compose
Install CVAT via compose
# sudo dnf install git -y
# git clone https://github.com/opencv/cvat
# cd cvat
# git checkout tags/v1.4.0
# vim docker-compose.yml
Add the proper image tags to the CVAT containers:
...
cvat:
container_name: cvat
image: openvino/cvat_server:v1.4.0
...
cvat_ui:
container_name: cvat_ui
image: openvino/cvat_ui:v1.4.0
...
Then spin up the containers:
# docker-compose up -d
Create superuser
I.e. django / password
# docker exec -it cvat bash -ic 'python3 ~/manage.py createsuperuser'
Username (leave blank to use 'django'):
Email address:
Password: password
Password (again): password
This password is too common.
Bypass password validation and create user anyway? [y/N]: y
Superuser created successfully.
Check container
# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
8301ab32e473 nginx:stable-alpine "/docker-entrypoint.…" 7 minutes ago Up 7 minutes 0.0.0.0:8080->80/tcp cvat_proxy
4ba51027a506 openvino/cvat_ui "/docker-entrypoint.…" 7 minutes ago Up 7 minutes 80/tcp cvat_ui
accf8d79a21c openvino/cvat_server "/usr/bin/supervisord" 7 minutes ago Up 7 minutes 8080/tcp cvat
6d255df66037 redis:4.0-alpine "docker-entrypoint.s…" 7 minutes ago Up 7 minutes 6379/tcp cvat_redis
20fc714a68e6 postgres:10-alpine "docker-entrypoint.s…" 7 minutes ago Up 7 minutes 5432/tcp cvat_db
Check if the CVAT web site is responding
# curl localhost:8080
...
<meta
name="description"
content="Computer Vision Annotation Tool (CVAT) is a free, open source, web-based image and video annotation tool which is used for labeling data for computer vision algorithms. CVAT supports the primary tasks of supervised machine learning: object detection, image classification, and image segmentation. CVAT allows users to annotate data for each of these cases"
/>
<meta name="”robots”" content="index, follow" />
<title>Computer Vision Annotation Tool</title>
...
Expose VCAT externally
Replace `.apps.ocp5.stormshift.coe.muc.redhat.com` with your `CVAT_HOST`
# docker-compose down
# cat <<EOF > docker-compose.override.yml
version: '3.3'
services:
cvat_proxy:
environment:
CVAT_HOST: .apps.ocp5.stormshift.coe.muc.redhat.com
EOF
# docker-compose up -d
Exit VM shell
exit
Expose port as service and create route
# virtctl expose virtualmachineinstance cvat --port=8080 --name=cvat
# oc create route edge --service=cvat
# oc get route cvat
NAME HOST/PORT PATH SERVICES PORT TERMINATION WILDCARD
cvat cvat-manuela-visual-inspection.apps.ocp5.stormshift.coe.muc.redhat.com cvat <all> edge None
Open your CVAT Django Admin page and add a user. E.g.,
https://cvat-manuela-visual-inspection.apps.ocp5.stormshift.coe.muc.redhat.com/admin/
Add User. E.g. manuela / cvatdemo
Add user to annotator, observer and user group
Save and logout.
For further details see the CVAT Users Guide
The demo has multiple parts and you can pick and choose depending on you audience.
- Show Docker application running in OpenShift Virtualization VM
- Demo the annotation workflow for the visual inspecting showcase
For a long demo, walk through the installation above.
Alternatively, you can just open the console of the cvat
virtual machine, login and show the running container with docker ps
:
Additional, navigate to the routes and open the cvat
route.
Show unlabeled images on file systems
With your favorite file explorer, navigate to manuela-visual-inspection/ml/darknet/data/metal_yolo
and filter for png
files and explain the data: List of scratch bent and good images
Upload and show images in CAVT
- Open CVAT in E.g. https://cvat-manuela-visual-inspection.apps.ocp5.stormshift.coe.muc.redhat.com
- Login as
manuela
user. - Create a new project
demo
and add the labelsscratch
andbent
to the project: - Open the
demo
project and create a new task: - Name the task
metal-nut
and upload allpng
images frommanuela-visual-inspection/ml/darknet/data/metal_yolo/
usingClick or drag files to this area
: - Submit task.
The data are being uploaded to the server..
- Navigate to
Tasks
:
Annotate Showcase manual annotation:
Upload pre-labeled annotations:
- Navigate to the Task list and select
Actions
->Upload Annotations
->YOLO 1.1
- Upload annotation file
metal-nut-annotations.zip
frommanuela-visual-inspection/ml/darknet/
. - In case the warning
Current annotation will be lost
appears, pressUpdate
.
Show pre-labeled data:
Clean-up annotation workflow
- In CVAT, navigate to projects and delete
demo
project.
Delete cvat VM
- Delete VM, DV, Service and Route
oc project manuela-visual-inspection
oc delete vm cvat
oc delete dv centos8-stream
oc delete route cvat
oc delete service cvat